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Chapter 0

Overview

Lecture 1: 18 Jan
There are three parts to this course:

1. Symplectic Topology and Geometry

2. Hamiltonian Floer Homology

3. Lagrangian Floer Homology

0.1 Symplectic Topology and Geometry

Definition 1. A symplectic manifold is a smooth manifold M equipped
with a symplectic form ω ∈ Ω2(M) i.e. a 2-form such that

1. dω = 0, and

2. ωn is a volume form. Equivalently, that ω is non-degenerate. Note
here that 2n = dimM , forcing the dimension of M to be even.

Example. R2n with coordinates x1, . . . , xn, y1, . . . , yn, equipped with the
standard symplectic form

ωst =

n∑
i=1

dxi ∧ dyi.

Theorem 1 (Darboux). Locally, every symplectic manifold is “modelled by"
(R2n, ωst).

Darboux’s Theorem is an instance of so-called symplectic flexibility. Here are
some more examples of symplectic manifolds:

Example. Surfaces equipped with area forms.
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Lecture 1: 18 Jan

Example. Kaler manifolds, which are certain types of complex manifolds.
Examples include (CPn, ωFS), projective varieties. For these examples,
there exists an almost complex structure, i.e. an endomorphism

J : TM → TM

of the tangent bundle TM , such that J2 = − Id. And the Kalher condition
is satisfied: That

g(v, w) := ω(v, Jw)

defines a metric. In this way, the collection (ω, J, g) are related to each
other, and we call J a compatible almost complex structure to ω.

It is a fact that compatible alsmost complex structures exist in abundance on
symplectic manifolds. They provide an important auxiliary piece of data, like
having a metric on a smooth manifold allows one to do Morse Theory.

Why study symplectic manifolds? The original motivation is from Hamil-
ton’s take on classical mechanics. Symplectic manifolds generalize the notion of
phase space.

Hamiltonian dynamics begins with a symplectic manifold (M,ω), and a
smooth function H : M → R called the Hamiltonian. There is then an asso-
ciated vector field XH . Particles move along flow lines of XH . We shall study
the trajectory of a particle

γ : R→M

and its velocity vector at some time t:

dγ

dt
= XH ◦ γ(t).

The vector field XH is defined by specifying:

dH = ω(XH , ·).

Compare this definition to how ∇gH, the gradient vector field, is defined.

Arnold’s Conjecture: Suppose (M,ω) is a symplectic manifold, andHt : M →
R is a time-dependent smooth function (a Hamiltonian), i.e. Ht : M × R→ R.
Question: How many points p ∈M will return to their original position after a
unit of time under this Hamiltonian flow? (so we are really asking for number
of fixed points)

Conjecture: the number of such points equals the number of fixed points
of ϕ1H , the time-1 flow of H = Ht, and it is conjectured that this quantity is
greater or equal to the dimension of H∗(M,R).

Compare this with Lefschetz Fixed Point Theorem:

#Fix(ϕ1H) ≥ |χ(X)|

Here, by definition χ(M) is some alternating sum, so its size is smaller than
the total dimension of H∗(M,R). This shows that a symplectic manifold should
give us a lot more fixed points than usual.
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Lecture 1: 18 Jan

Another point of comparison is with the Morse Inequality: A Morse function
f : M → R is a smooth function with some additional properties. We have the
Morse Inequality (some version of):

#Crit(f) = #{p ∈M : dfp = 0} ≥ dimH∗(M ;R).

This comes freom Morse homology where the chain complex is generated by
Crit(f), and the homology recovers H∗(M ;R).

0.2 Hamiltonian Floer Homology
Floer’s idea: to do Morse Theory on the loop space LM , the spaced of con-
tractible loops of M (i.e. f : S1 → M), together with a choice of “Morse func-
tion", taken to be the symplectic action functional AH , which depends on the
Hamiltonian H. So that we have

AH : LM → R.

Then the critical points ofAH will be in one-to-one correspondence with Fix(ϕ1H).

CHAPTER 0. OVERVIEW 4



Chapter 2

Symplectic Geometry

Lecture 2: 20 Jan

2.1 Hamiltonian Mechanics
We begin with Newton’s Second Law of Motion: A force F acts of a particle
with mass m satisfies:

F = ma.

Here we consider the force to be

F : R3 → R3

then the acceleration is the second derivative

a =
d2x

dt2

of x = (x1, x2, x3) with respect to time. Now for simplicity we take m = 1, so
we have

F =
d2x

dt2
.

This is a single second order ODE. Now let us define momentum to be

y =
dx

dt
.

Now we have two first order ODEs:

y =
dx

dt
, F =

dy

dt
.

Let us assume that F is a conservative force, i.e.

F = −dV

dx
=

(
− ∂V
∂x1

,− ∂V
∂x2

,
∂V

∂x3
]

)
for some

V : R3 → R

called the potential energy.
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Lecture 2: 20 Jan

We can define the total energy, or the Hamiltonian as

H : R3 × R3 → R

(x, y) 7→ V (x) +
1

2
y · y

Here we interpret the x as the position, and y the momentum; and the
domain of this map is called the phase space; the V (x) as the potential energy,
and 1

2y · y as the kinetic energy.
Then Newton’s Laws are equivalent to

∂H

∂x
=
∂V

∂x
= −F = −dy

dt

∂H

∂y
= y =

dx

dt
.

We will take the two equations and together they are known as Hamilton’s
equations:

Definition 2 (Hamilton’s Equations).

∂H

∂x
= −dy

dt
,

∂H

∂y
=

dx

dt
.

We may interpret Hamilton’s equations as being a restatement of Newton’s
Second Law for an object subject to a conservative force.

Now suppose we have a particle moving along a trajectory, and the following
is its motion in phase space:

γ(t) = (x(t), y(t)) ∈ R2n

in the presence of a Hamiltonian H. Then the following expresses how the total
energy of the particle changes as it moves:

d

dt
(H ◦ γ(t)) =

n∑
i=1

∂H

∂xi

dxi
dt

+
∂H

∂yi

dyi
dt

(chain rule) (2.1)

=

n∑
i=1

−dyi
dt
· dxi
dt

+
dxi
dt
· dyi
dt

(Hamilton’s equations) (2.2)

= 0. (2.3)

Thus H, the total energy, is conserved as the particle moves.
If γ is the trajectory in phase space, then its tangent vector at a given point

is

dγ

dt
=

n∑
i=1

dxi
dt

∂

∂xi
+

dyi
dt
· ∂
∂yi

(2.4)

=

n∑
i=1

∂H

∂yi
· ∂

∂xi
− ∂H

∂xi
· ∂
∂yi

. (2.5)
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Lecture 2: 20 Jan

(here ∂
∂xi

and ∂
∂yi

are the basis vectors.) So we have a vector field that depends
on H, evaluated on γ(t). So we can define the vector field XH by the formula

XH :=

n∑
i=1

∂H

∂yi
· ∂

∂xi
− ∂H

∂xi
· ∂
∂yi

.

Thus a trajectory in phase space, i.e. an integral curve of XH , must satisfy the
first-order ODE

dγ

dt
= XH ◦ γ(t).

We want to abstract this mechanism

C∞(R2n)→ Γ(R2n)

H 7→ XH

for describing physics of motion in the presence of H. Compare this mechanism
with the differential of H:

dH =
∑ ∂H

∂xi
· dxi +

∂H

∂yi
· dyi.

This looks like XH but they differ because dH is a 1-form.
The “mediator” between dH and XH is given by the 2-form

ω0 =

n∑
i=1

dxi ∧ dyi ∈ Ω2(R)

in the sense that
dH = ω0(XH ,−) = ι(XH)ω0.

Definition 3. A linear transformation A ∈ GL(R2n) is symplectic if A∗ω0 =
ω0. In other words, A : R2n → R2n is symplectic if

A∗ω0(v, w) := ω0(Av,Aw) = ω0(v, w)

for all v, w ∈ R2n.

Definition 4. A diffeomorphism ψ : U → V of open sets U, V ⊂ R2n is
symplectic if

dψ : TpU → Tψ(p)V

is a symplectic linear transformation for all p ∈ U .

The set of all symplectic transformations on R2n is denoted by Sp(2n), and is
called the symplectic linear group.

On the other hand, we also have

Symp(R2n) := {ψ ∈ Diff(R2n) : dψp ∈ Sp(2n) ∀p ∈ R2n}.

And it is a fact that Symp(R2n) is a subgroup of Diff(R2n).

CHAPTER 2. SYMPLECTIC GEOMETRY 7



Lecture 3: 23 Jan

Figure 2.1: Symplectic diffeomorphism of R2n

Intuition. The slogan is: Symplectic transformations preserve Hamiltonian
dynamics.

More precisely,
That is, ψ ∈ Symp(R2n) if and only if for all H ∈ C∞(R2n),

ψ∗XH = XH◦ψ.

Lecture 3: 23 Jan

2.2 Symplectic Manifolds
Consider R2n with coordinates (x1, . . . , xn, y1, . . . , yn) and H ∈ C∞(R2n), a
“Hamiltonian”. We arrived at the associated vector field

XH :=

n∑
i=1

∂H

∂yi
· ∂

∂xi
− ∂H

∂xi
· ∂
∂yi

,

whose dynamics governs the motion of a particle in phase space in the following
sense:

Trajectories/integral curves/flow-lines are given by γ : R→ R2n satisfying

dγ

dt
= XH ◦ γ(t).

We would like to generalize to other smooth manifolds. One way is the
following: Suppose we have a smooth 2n-manifold, and H ∈ C∞(M). On a
chart

ϕ : M ⊃ U → V ⊂ R2n,

CHAPTER 2. SYMPLECTIC GEOMETRY 8



Lecture 3: 23 Jan

consider the function H ◦ ϕ−1 ∈ C∞(V ), which is a Hamiltonian in the earlier
sense, so we can define XH◦ϕ−1 on V as before.

However, this is a local definition. We would like to have a global vector
field XH ∈ Γ(M) such that the restriction on charts is the local definition:

XH

∣∣∣∣
U

= ϕ∗(XH◦ϕ−1).

In order for this to work, we need to ensure the overlaps are compatible in sense,
so we will need a condition on the transition maps between charts.

Theorem 2. This assignment can be made

C∞(M)→ T (M)

H 7→ XH

if and only if the transition functions are symplectic (as diffeomorphisms
between open sets of R2n).

Definition 5. A symplectic manifold is a smooth manifold M covered by
an atlas where the transition maps are symplectic.

Recall that on R2n there is the 2-form

ω0 =

n∑
i=1

dxi ∧ dyi.

This 2-form is

• Closed, i.e. dω0 = 0; and

• non-degenerate, i.e. ωn0 is a volume form on R2n.

If M is a symplectic manfiold as defined above, then we get a global 2-form
ω ∈ Ω2(M) by defining locally

ω

∣∣∣∣
U

= ϕ∗ω0

on each chart. We call ω a symplectic form on M .
As before, given H ∈ C∞(M), we can define the unique vector field XH via

dH = ω(XH ,−)

using the non-degeneracy of ω.
For small time t in any neighborhood, we can integrate XH to get a diffeo-

morphism ϕtH : M →M , which is the time-t flow of the vector field XH .

Proposition 1. Some key facts about ϕtH :

1. It preserves H (conservation of energy).

CHAPTER 2. SYMPLECTIC GEOMETRY 9



Lecture 4: 25 Jan

2. It preserves ω, i.e. (ϕtH)∗ω = ω (Hamiltonian flow preserves sym-
plectic form).

Proof. 1. For any flow line γ : R → M of XH , the value of H ◦ γ(t) is
constant:

d

dt
H ◦ γ(t) = dH

(
dγ(t)

dt

)
(2.6)

= dH(XH ◦ γ(t)) (2.7)
= ω(XH , XH ◦ γ(H)) (2.8)
= 0. (2.9)

2. It suffices to show that

d

dt

(
ϕtH
)∗
ω = 0

since
(ϕ0H)∗ω = Id∗ ω = ω.

By differential geometry,

d

dt

(
ϕtH
)∗
ω = LXH

ω

then by Cartan’s magic formula, the RHS is

LXH
ω = ι(XH)dω + d(ι(XH)ω) (2.10)
= d(ι(XH)ω) (2.11)
= ddH (2.12)
= 0. (2.13)

(See da Silva)

Definition 6. A symplectic manifold is a smooth manifold M equipped
with a symplectic form.

Theorem 3 (Darboux). If ω is a symplectic form on M and p ∈ M , then
there exists a neighborhood U of p in M and a diffeomorphism

ϕ : R2n ⊃ V → U

such that
ϕ∗ω = ω0.

CHAPTER 2. SYMPLECTIC GEOMETRY 10



Lecture 4: 25 Jan

2.3 Darboux’s Theorem and Moser’s Method

Lecture 4: 25 Jan

Theorem 4 (Linear Darboux’s Theorem). Let V be a finite-dimensional vec-
tor space, and Ω ∈ Λ2V ∗. The following are equivalent:

1. dimV = 2n and Ωn ∈ Λ2nV ∗ is non-zero.

2. If v ∈ V and Ω(v, w) = 0 for all ω ∈ V , then v = 0.

3. The map

V → V ∗

v 7→ ω(v,−)

is an isomorphism.

4. There exists a basis {x1, . . . , xn, y1, . . . , yn} of V such that

Ω =

n∑
i=1

dxi ∧ dyi.

We say Ω is non-degenerate if it satisfies any one of the above.

Proof. Proof sketch of 2.⇒ 4. Suppose k > 0 and there exists.

Proof of Darboux’s Theorem

Proof. To begin, choose any neighborhood U of p and a diffeomorphism
U → U ′ ⊂ R2n. Now push forward ω to U ′. For the remainder, we will
denote U ′ as U , which we require to contain 0, and we will denote the
pushforward of ω as simply ω. So now the setting is U ⊂ R2n, our point
of interest is the origin, and ω is a form on this neighborhood of Rn. In
particular ω gives a pairing on the tangent space above each point. We
put our attention on ω

∣∣
T0U

, which is non-degenerate in the sense of linear
Darboux above.

By linear Darboux, there exists a diffeomorphism

ϕ : U → U ′ ⊂ R2n

0 7→ 0

such that
ϕ∗ω

∣∣∣∣
T0U

= ω0

∣∣∣∣
T0U ′

.

Key idea: Find ϕ = ϕ1, where ϕt is the time-t flow of a time-dependent
vector field Xt on U for 0 ≤ t ≤ 1. Moreover, if we define

ωt = tω + (1− t)ω0, 0 ≤ t ≤ 1

CHAPTER 2. SYMPLECTIC GEOMETRY 11



Lecture 4: 25 Jan

we will arrange such that
ϕ∗tωt = ω0. (2.14)

In other words, we claim that there exists a time-dependent vector field
Xt, whose isotopy ϕt it generates, satisfies 2.14.

Recall (da Silva pg.35) that Xt generating ϕt means the following are
satisfied:

d

dt
ϕt(p) = Xt ◦ ϕt(p).

And we would like this isotopy to satisfy ϕ0 = Id.
In order for 2.14 to be satisfied, it amounts to show the isotopy ϕt

satisfies
d

dt
ϕ∗tωt = 0, 0 ≤ t ≤ 1.

On the other hand, suppose this isotopy ϕt is generated by Xt, then

d

dt
ϕ∗tωt

chain rule
=

d

ds
ϕ∗sωt

∣∣∣∣
s=t

+
d

ds
ϕ∗sωs

∣∣∣∣
s=t

(2.15)

= ϕ∗tLXt
ωt + ϕ∗t (ω − ω0) (2.16)

= ϕ∗t (LXt
ωt + ω − ω0). (2.17)

So we are reduced to finding such an Xt that makes this expression vanish:

LXtωt + ω − ω0 = 0.

To that end, we can apply Cartan’s magic formula for the first term:

LXt
ωt = ι(Xt)dωt + dι(Xt)ωt,

but since dωt = 0,
LXt

= dι(Xt)ωt.

Thus we are now reduced to finding Xt satisfying

dι(Xt)ωt = ω0 − ω, ∀0 ≤ t ≤ 1. (2.18)

This equation is called Moser’s Equation, which need now to solve for Xt

(the possibility of solving this is covered in da Silva by a single sentence
on pg. 44).

By shrinking U if needed, we must have H∗(U) = 0 for ∗ > 0. Hence
there exist primitives λ0, λ1 ∈ Ω1(U) such that

dλ0 = ω0, dλ1 = ω.

Explicitly, since we know

ω0 =

n∑
i=1

dxi ∧ dyi,

CHAPTER 2. SYMPLECTIC GEOMETRY 12



Lecture 5: 27 Jan

we could use

λ0 =

n∑
i=1

xidyi.

So now Moser’s equation becomes

dι(Xt)ωt = dλ0 − dλ.

To solve this, it is sufficient to solve

ι(Xt)ωt = λ0 − λ

for all t. We call this the strong Moser’s Equation.

Lecture 5: 27 Jan

2.4 Action
SupposeH : R2n → R2n is a Hamiltonian. Consider two points z0 = (x0, y0), z1 =
(x1, y1) ∈ R2n, and following set:

P = {smooth γ : [0, 1]→ R2n | γ(0) = z0, γ(1) = z1}

which is the set of smooth paths from z0 to z1.
Consider the following question: Which elements of P , that is, which paths

correspond to “physical paths” a particle may take in the phase space? The
answer is the such a path (if one exists) must satisfy Hamilton’s Equations, and
the required initial conditions:

γ(0) = z0, γ(1) = z1

and
dγ

dt
= XH ◦ γ(t).

Lagrange’s idea: Define a functional on P so that the critical points of this
functional correspond to such physical paths. This functional, which depends
on the Hamiltonian:

AH : P → R
is called the action.

To define AH , we integrate something called the action 1-form λH along a
path γ(t) = (x(t), y(t)) (the action 1-form takes a path and spits out a number).

Definition 7. The action 1-form is defined to be

λH := −λ0 −Hdt

where λ0 is as defined in the proof of Darboux’s Theorem:

λ0 =

n∑
i=1

xidyi

CHAPTER 2. SYMPLECTIC GEOMETRY 13



Lecture 6: 30 Jan

which is a primitive of ω0.
Integrating the action 1-form along a path γ ∈ P , we get

A(γ) =
∫
γ

λH (2.19)

=

∫ 1

0

γ∗λH (2.20)

=

∫ 1

0

[
−γ∗

(
n∑
i=1

xidyi

)
− γ∗(Hdt)

]
(2.21)

=

∫ 1

0

[−x(t) · dy(t)−H ◦ γ(t)dt] (2.22)

= −
∫ 1

0

(
x(t)

dy

dt
(t) +H ◦ γ(t)

)
dt. (2.23)

Proposition 2. The critical points of the action functional AH are exactly
the paths obeying Hamilton’s Equations. In other words, a path γ ∈ P is
a critical point of AH if and only if γ satisfies Hamilton’s equations.

This statement, or some variation thereof, is called Lagrange’s Principle of
Least Action. In some sense it says the path of least-action is the physical path.

Remark. We might actually have critical points which are not minimums.
In fact, if we do not assume M to be closed then there may not exist any
minima.

The proof of the above proposition will involve variational techniques.

Lecture 6: 30 Jan
We will first work in R2n. We fix H ∈ C∞(R2n). Fix two points z0 =
(x0, y0), z1 = (x1, y1) ∈ R2n. Our path space will be

P = {smooth γ : [0, 1]→ R2n | γ(0) = z0, γ(1) = z1}.

Then following the previous definition, the actiona functional is

A = AH : P → R

γ 7→ AH(γ) =

∫ 1

0

γ∗λH

where
λH = λ0 −Hdt

is the action 1-form, and where

λ0 =

n∑
i=1

yidxi

CHAPTER 2. SYMPLECTIC GEOMETRY 14



Lecture 6: 30 Jan

is a primitive of

ω0 =

n∑
i=1

dxi ∧ dyi.

We also previously saw the following expression for the action functional:

AH(γ) =

∫ 1

0

(
y(t) · dx

dt
(t)−H ◦ γ(t)

)
dt.

Now for the proof of the Principle of Least Action (on R2n).

Proof (Principle of Least Action, R2n version). Fix any γ ∈ P and vary it
in a smooth family

γs : [0, 1]→ R2n

where
γs(0) = z0, γs(1) = z1 ∀s ∈ (−ε, ε)

for some ε > 0; and further,
γ0 = γ.

Pictorially, we vary γ in both directions while holding the endpoints fixed.
See Figure 2.2.

Figure 2.2: Varying a path.

By definition, γ is a critical point of AH if and only if

d

ds
AH(γs)

∣∣∣∣
s=0

= 0. (2.24)

CHAPTER 2. SYMPLECTIC GEOMETRY 15



Lecture 6: 30 Jan

Let us define a vector field on γ

γ̂(t) = (x̂(t), ŷ(t)) :=
dγs(t)

ds

∣∣∣∣
s=0

.

That is, at each point γ(t) on γ, we have a vector pointing in the direction
of how the γs family is changing, for that same t. One should think of this
vector field as some sort of “tangent vector” to γ in P (this point will be
elaborated on later) Pictorially:

Figure 2.3: The vector fieldγ̂(t).

Now,

d

ds
AH(γs)

∣∣∣∣
s=0

Fubini
=

∫ 1

0

d

ds

(
ys(t) ·

dγs(t)

dt
−H ◦ γs(t)

)
dt (2.25)

=

∫ 1

0

(
ŷ(H) · dγs(t)

dt
+ y(t) · dx̂(t)

dt

)
︸ ︷︷ ︸

product rule

dt (2.26)

+

∫ 1

0

(
−∂H
∂x
· x̂(t)− ∂H

∂y
· ŷ(t)

)
dt (2.27)

CHAPTER 2. SYMPLECTIC GEOMETRY 16



Lecture 7: 1st Feb

Let us examine the second term in the first integral:∫ 1

0

y(t)
dx̂(t)

dt
dt

by parts
= y(t)x̂(t)

∣∣∣∣1
0

−
∫ 1

0

dy(t)

dt
x̂(t)dt.

Thus, after gathering the x̂(t) and ŷ(t) terms, equation 2.24 is equivalent
to

0 =

∫ 1

0

[
x̂(t)

(
−dy

dt
− ∂H

∂x

)
+ ŷ(t)

(
dx

dt
− ∂H

∂y

)]
. (2.28)

Thus γ is a critical point of AH if and only if the above equation holds.
Note, only x̂ and ŷ depend on the variation we chose. But the above

equation must hold for any variation. In particular, we can choose x̂ to be
any bump function you like, and ŷ ≡ 0 (or vice-versa).

Therefore,
∂H

∂y
=

dx

dt
,

∂H

∂x
= −dy

dt

as desired.
Now we would like to generalize to the setting of general symplectic man-

ifolds. In our proof for the R2n case, we make use of the existence of λ0, a
primitive of ω0. So for the first pass of Principle of Least Action on a symplec-
tic manifold (M,ω), we will assume M is exact, i.e. ω has a primitive.

Lecture 7: 1st Feb
The setting is a symplectic manifold (M,ω), with the added assumption of
exactness i.e. ω = dλ. In other words, we assume ω has a primitive. We also
have H ∈ C∞(M). Now fix points z0, z1 ∈M and consider the space

P := {smooth γ : [0, 1]→M | γ(0) = z0, γ(1) = z1}

of paths from z0 to z1.
We are interested in picking out a γ ∈ P such that

dγ

dt
= XH ◦ γ(t)

i.e. the Hamiltonian equations are satisfied on γ.
To that end, let us define the action

A = AH : P → R

by way of first defining the action 1-form

λ+Hdt ∈ Ω1(M)

then the action A takes some γ ∈ P , first pulling the above 1-form back by γ,
and integrate from 0 to 1. That is,

A(γ) =
∫
γ∗λ+H ◦ γ(t)dt.

CHAPTER 2. SYMPLECTIC GEOMETRY 17
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Proposition 3 (Principle of Least Action, exact version). Suppose (M,ω) is
an exact symplectic manifold. A path γ ∈ P is a critical point of AH if
and only if Hamilton’s equations are satisfied for γ:

dγ

dt
(t) = XH ◦ γ(t).

Proof. Notice first that γ ∈ Crit(A) if and only if dAγ = 0 (definition of
critical point). In other words, γ is a critical point if and only if

(dAγ)(Y ) = 0

for every Y ∈ TγP . But what exactly is a “tangent vector at γ inside the
space P"? It should be a smooth vector field along γ.

More precisely, Y ∈ TγP can be written as

Y = Yt, 0 ≤ t ≤ 1, Yt ∈ Tγ(t)M.

Now comes dA(Y ). It is rekonned as follows: Choose a variation

γs ∈ P, −ε < s < ε, γ0 = γ

such that
dγs
dt

(t) = Yt.

In other words, the vectors in the vector field Y give the directions for the
variation.

Then we can define

dA(Y ) =
d

ds
A(γs)

∣∣∣∣
s=0

.

Opening this up, we have

d

ds
A(γs)

∣∣∣∣
s=0

=

∫ 1

0

d

ds
(γ∗sλ)

∣∣∣∣
s=0︸ ︷︷ ︸

first integrand

+
d

ds
(H ◦ γs(t))

∣∣∣∣
s=0︸ ︷︷ ︸

second integrand

dt (2.29)

Let us investigate the two integrands separately.
First integrand:

d

ds
(γ∗sλ)

∣∣∣∣
s=0

Lee derivative
= γ∗LY (2.30)

Cartan
= γ∗(d(ι(Y )λ)︸ ︷︷ ︸

1.

+ ι(Y )dλ︸ ︷︷ ︸
2.

) (2.31)

We have
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1. :

γ∗(d(ι(Y )λ) = d(γ∗(ι(Y )λ)) (2.32)
= d(γ∗λ(Y )) (2.33)
= d(λ(Yt)) . (2.34)

Hence when we evaluate the integral,∫ 1

0

d(λ(Yt))
FTC
= λ(Y1)− λ(Y0) = 0.

2. :

γ∗(ι(Y )dλ) = γ∗(ι(Y )ω) (2.35)

Now this thing on the right hand side is a 1-form on [0, 1]. To figure
out what it is (how it acts), we plug in the constant vector field ∂

∂t
on [0, 1]:

γ∗(ι(Y )ω)

(
∂

∂t

)
= ι(Y )ω

(
dγ

(
∂

∂t

))
(2.36)

= ι(Y )ω

(
dγ

dt

)
(2.37)

= ω

(
Y,

dγ

dt

)
. (2.38)

Hence γ∗(ι(Y )ω) is the same 1-form on [0, 1] as

ω

(
Y,

dγ

dt

)
dt.

So now when we evaluate the integral:∫
2. =

∫ 1

0

ω

(
Yt,

dγ

dt
(t)

)
dt.

Now let us look at the second integrand.
Second integrand:

d

ds
H ◦ γs(t)

∣∣∣∣
s=0

= dH(Yt) (2.39)

= ι(XH)ω(Yt) (2.40)
= ω(XH ◦ γ(t), Yt). (2.41)
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Putting the integrands together, we have

dA(Y ) =
d

ds
A(γs)

∣∣∣∣
s=0

(2.42)

=

∫ 1

0

[
ω

(
Yt,

dγ

dt
(t)

)
+ ω(XH ◦ γ(t), Yt)

]
dt (2.43)

=

∫ 1

0

ω

(
Yt,

dγ

dt
(t)−XH ◦ γ(t)

)
dt. (2.44)

So given any γ ∈ P , and a “tangent vector” Yt ∈ TγP (a vector field on γ),
we have this above formula.

Now it follows that dA(Y ) ≡ 0 if and only if the RHS of this formula
vanishes for all choices of tangent vector Y = Yt.

Now to establish the desired result, suppose γ satisfies Hamilton’s equa-
tions:

dγ

dt
(t) = XH ◦ γ(t).

Then the formula does indeed vanish for all Y = Yt. Indeed, if not, we can
use the non-degeneracy of ω to build a vector field Y such that the RHS
is non-zero.

Remark. The same proof goes through if we replaced H ∈ C∞(M) by a
time-dependent

H = Ht ∈ C∞(M × [0, 1]).

We shall like to work with actions in more general symplectic manifolds,
not just ones that are exact. We will be interested also in studying loops

γ : [0, 1]→M, γ(0) = γ(1)

and such that they satisfy Hamilton’s equaitons

dγ

dt
= XHt

◦ γ(t).

And we shall study the space

L :=
{
smooth contractible loopsγ : S1 →M

}
.

Here contractible can be understood as the following: for each loop γ ∈ L,
there exists a γ̂ : D2 →M such that γ̂

∣∣
∂D2 = γ. We then define the action

on loop space to be
A := AHt

: L → R

A(γ)
∫ 1

0

Ht ◦ γ(t)dt
∫
D2

γ̂ω.
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Lecture 8: 3rd February
di 03 dec 23:02

The setting now is (M,ω), any symplectic manifold (no longer assuming exact).
We consider time-dependent Hamitonians

Ht ∈ C∞(M × [0, 1]),

and define the space of smooth contractible closed loops:

L(M) = {γ : S1 →M : γ contractible}.

As mentioned before, the contractibility condition is that for any loop γ ∈ L(M),
we can always “fill it in with a disk”: there exists γ̂ : D2 →M such that

γ̂

∣∣∣∣
∂D2

= γ.

Now we define the action functional to be

A = AHt : L(M)→ R

by

A(γ) =
∫ 1

0

Ht ◦ γ(t)dt+
∫
D2

γ̂∗ω.

The interpretation for this formula is that of computing the “symplectic area of
the disk”.

Remark. In the previous setting, we assumed (M,ω) is exact, i.e. ω = dλ
for some λ ∈ Ω1(M). If we were in that setting, then∫

D2

γ̂∗ω =

∫
D2

γ̂∗dλ (2.45)

=

∫
D2

d(γ̂∗λ) (2.46)

Stokes
=

∫
∂D2

γ∗λ (2.47)

=

∫
S1

γ∗λ (2.48)

=

∫ 1

0

γ∗λ. (2.49)

We need to make sure that the choice of γ̂ does not matter so that A is
actually well-defined. That is, ∫

D2

γ̂∗ω

is independent of the choice of the “cappping” γ̂ of γ.
To that end we will need an assumption on M to guarantee this. The

assumption that will work is to assume

π2(M) = 0.
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Here’s why: Suppose we have two cappings γ̂1 and γ̂2, then we can glue them
together to get γ̂ : S2 →M .

Now we want to show

0 =

∫
D2

γ̂∗1ω −
∫
D2

γ̂∗2ω =

∫
S2

γ̂∗ω.

The latter of which is the symplectic area of the 2-sphere. If π2(M) = 0, then
there exists and extension of γ̂:

ˆ̂γ : B3 →M

such that
ˆ̂γ

∣∣∣∣
∂B3

= γ̂.

Thus, ∫
S2

γ̂∗ω =

∫
∂B3

ˆ̂γ∗ω (2.50)

Stokes
=

∫
B3

d
(
ˆ̂γ∗ω

)
(2.51)

=

∫
B3

ˆ̂γ∗dω (2.52)

ω closed
= 0. (2.53)

So we have the desired result.
More generally, we could assume that

[ω] ∈ H2(M)

vanishes on the image of the Hurwicz homomorphism

π2(M)→ H2(M).

This condition is called symplectically apherical. i.e. the symplectic area of
every 2-sphere vanishes.

Remark. Recall: The Huriwicz homomorphism

h∗ : πn(X)→ Hn(X)

is defined as such: Elements of πn(X) are maps Sn → X. Choose a
canonical generator un ∈ Hn(S

n) (because Sn oriented to top dimensional
homology is rank 1). Then an element f ∈ πn(X) is mapped to f∗(un) ∈
Hn(X).

Proposition 4. If (M,ω) is symplectically aspherical, then

A = AHt
: L(M)→ R

is well-defined for any Ht ∈ C∞(M × [0, 1]).
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So now we are ready to state the most general form of the Principle of Least
Action:

Proposition 5 (Principle of Least Action, general). If γ ∈ L(M), then γ ∈
Crit(AHt) if and only if

dγ

dt
(t) = XHt

◦ γ(t), ∀t.

That is, γ ∈ Crit(AHt
) if and only if γ is a closed orbit of the Hamiltonian

flow ϕtHt
(closed orbit because γ is a loop).

Proof. See reference: Audin-Damian, Morse Theory and Floer Homology.

Why time-dependent Hamiltonians? In other words, why do we care
about closed orbits of Hamiltonian flow of a time-dependent Hamiltonian? Sup-
pose H is instead just a time-independent (sometimes called “autonomous”)
Hamiltonian. Then closed orbits of ϕ1H are recurrent states; they are in one-to-
one correspondence with points γ(0) ∈M which return to their original position
after time-1 flow of H. Given any (M,ω), must there be lots of recurrent states
for a given H? Yes.

{closed orbits of ϕtH , 0 ≤ t ≤ 1} ←→ Fix(ϕ1H).

Compare this with the statement of Lefshetz Fixed Point Theorem: If f ∈
Diff(M) for any smooth manifold M , then

#Fix(f) ≥ |χ(M)|.

Also compare with the statement of the Poincare-Birkhoff Theorem: If
f ∈ Diff(S1 × [0, 1]) (this space is the annulus, which has Euler charactersitic
0). Suppose f preserves area, and rotates boundary components in opposite
directions, then f gas ≥ 2 fixed points.

The correct generalization of this Theorem to higher dimensions is not to
require “volume preserving”, but rather to require “preserving the symplectic
form” (but this raises the obvious question: what about odd-dimensional man-
ifolds?).

2.5 Arnold Conecture

Lecture 9: 8 Feb
Setting: (M,ω) closed symplectic manifold. We want a Lie subgroup H ≤
Symp(M,ω) (symplectomorphisms of (M,ω)).

Observation 1: Given a family ϕt ∈ Symp0(M,ω) such that ϕ0 = Id. This
is in one-to-one correspondence with αt ∈ Ω1(M), 0 ≤ t ≤ 1, αt closed (both
smooth in t). Reminder: Ω1(M) are 1-forms, i.e. they take a single vector from
the tangent space and spit out a number. Closed means dαt = 0.
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Proof. Suppose we have such a family ϕt ∈ Symp0(M,ω) of symplectomor-
phisms with the added condition of ϕ0 = Id is the identity diffeomorphism.
By the definition of symplectomorphism,

ϕ∗tω = ω, 0 ≤ t ≤ 1

i.e.
d

dt
ϕ∗tω = 0

and
ϕ0 = Id

if and only if
LXt

ω = 0

where Xt is the time-dependent vector field generating ϕt. This means the
following (pg. 35 of da Silva): Whenever there is an isotopy ϕ = ϕt : M →
M (through diffeomorphisms), there is an associated family of vector fields
Xt, which at each p ∈M satisfy

Xt(p) =
d

ds
ϕs(ϕ

−1
t (p))

∣∣∣∣
s=t

.

This jumble of symbols really just says at time t, the vector at a point
should point in the direction in which ϕ is changing at time t.

Now back to the proof.
In this case, Cartans formula

LXtω = ι(Xt)dω + dι(Xt)ω

reduces to
0 = dι(Xt)ω

because ω is a closed form. Hence the family of 1-forms αt defined as

αt = ι(Xt)ω

is closed for 0 ≤ t ≤ 1.
This is the correspondence

{ϕt} → {αt}

Other direction: Given α + t. There exists a time-dependent vector
field Xt such that ι(Xt)ω = αt. Using nondegeneracy of ω.

Because M is closed, we can integrate Xt for time 1 to get isotopy ϕt,
0 ≤ t ≤ 1 with ϕ0 = Id.

Conclude that ϕ∗ω = ω 0 ≤ t ≤ 1 using Cartans firmula and the Lie
derivative.

Observation 2: 1-parameter subgroups of Symp(M,ω) are in one-to-one cor-
respondence with closed 1-forms on M . Why is this:
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Proof. Given α a closed 1-form. Define αt = α for all t ∈ R the constant
1-parameter family. Then get time-indenedent vecor field X and time-t
flow ϕtX = ϕtH , where X = XH .

Note: Because X is autonomous, ϕtH ◦ ϕsH = ϕt+sH .
Conversely, given {ϕt} a 1-parameter subgroup of Symp(M,ω), march

through the proof of Observation 1 (forward direction) to get αt closed
1-forms for all t ∈ R. Check that αt is independent of t.

Suppose that α = dH is exact. Then the associated vector field X satisfies

α = ι(X)ω = dH.

Consider ϕ = ϕ1H . The fixed points

Fix(ϕ) ⊃ {p ∈M : Xp = 0} (2.54)
= {p ∈M : dHp = 0} (2.55)
= Crit(H). (2.56)

Hence
#Fix(ϕ) ≥ min{#Crit(H) : H ∈ C∞(M)}

By contrast if we choose α to be closed but not exact, then ϕ may not have
fixed points at all.

Example. (M,ω) = (T 2, ω0). We have angular coordinates (θ, ψ). Con-
sider the closed form dθ. It is not exact.

We have X = ∂
∂θ . Then ϕtH has no fixed points for 0 < t < 2π.

A sensible candidate for H ≤ Symp0(M,ω) is the smallest subgroup con-
taining

{ϕ1H : H ∈ C∞(H)}.

Here the notation ϕ1H means the time-1 symplectomorphism of a family of
Hamiltonian isotopies. A Hamiltonian isotopy is a symplectic isotopy wherein
each αi = dHi is exact. The problem of estimating

min{#Crit(H) : H ∈ C∞(M)}

is Lyusternik-Schnirelman Theory. Define the cup-length cl(M) of M to be the
maximum integer k such that there exists α1, . . . , αk ∈ H∗(M), |αi| ≥ 1, such
that

α1 ⌣ · · ·⌣ αk ̸= 0.

Then
cl(M) ≤ dim(M).

For example, M = T 2 has cl(M) = dim(M).

Theorem 5.

cl(M) + 1 ≤ min{#Crit(H) : H ∈ C∞(M)}
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Example.
k + 1 ≤ . . .M = T k

Check that this bound is attained.

Hence if H ∈ C∞(T 2n), then #Fix(ϕ1H) ≥ 2n+ 1.
Going back....
Note: if H,G ∈ C∞(M), then in general

ϕ1H ◦ ϕ1G
may not be equal to

ϕ1K

for some K ∈ C∞(M). However, if we define

Kt ∈ C∞(M × [0, 1])

by
Kt = H +G ◦ ϕtH ,

then it is an exercise to check

ϕtKt
= ϕtH ◦ ϕtG

in particular it is true that
ϕ1Kt

= ϕ1H ◦ ϕ1G.
Moreover if in the beginning we had Ht, Gt, and we went rhough to define

Kt = Ht +Gt ◦ ϕtH
then

ϕtKt
= ϕtHt

◦ ϕtGt

in particular it is true that

ϕ1Kt
= ϕ1Ht

◦ ϕ1Gt
.

Check, if we define instead:

Kt := −Ht ◦ ϕtHt

then
ϕtKt

= ϕtHt

−1

Thus

H = Ham(M,ω) := {ϕ1Ht
: Ht ∈ C∞(M × [0, 1]), αt = dHt} ⊴ Symp0(M,ω)

is an honest subgroup of Symp(M,ω). Elements of Ham(M,ω) are called
Hamiltonian symplectomorphisms. What the definition is say is f is a Hamilto-
nian symplectomorphism if there exists a Hamiltonian isotopy {ϕtHt

} such that
f = ϕ1Ht

.
Indeed, Arnold conjectured that if ϕ ∈ Ham(M,ω), then

#Fix(ϕ) ≥ min{#Crit(H) : H ∈ C∞(M)}.

(The RHS says take minimum over all arbitrary functions H on M) This is
obvious if ϕ = ϕ1H , but not obvious if ϕ = ϕ1Ht

.
Motivations of Arnold:
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1. Poincare-Birkhoff Theorem

2. The conjecture holds if ϕ ∈ Hom(M,ω) is chosen sufficiently close to Id.

There exists stronger conclusion if we put stronger hypothesis of Fix(ϕ),
namely that all fixed points are non-degenerate:

Given ϕ ∈ Diff(M), where M is just some smooth manifold. We can form
its graph

Γ(ϕ) := {(p, ϕ(p)) : p ∈M} ⊂M ×M.

A special case is if ϕ = Id, then we write Γ(ϕ) = ∆, the diagonal.
Thus,

Fix(ϕ)↔ Γ(ϕ) ∩∆

wehre
p 7→ (p, p).

Both ∆ and Γ(ϕ) are submanifolds of M ×M diffeo to M .
A fixed point p ∈ Fix(ϕ) is said to be non-degenerate if (p, p) is a transverse

point of intersection of Γ(ϕ) and ∆. Hence all fixed points Fix(ϕ) consists of
non-degenerate fixed points if and only if

Γ(ϕ) ⋔ ∆.

Arnold Conjecture #2: If ϕ ∈ Hom(M,ω) and all fixed points of ϕ are
non-degenerate, then

#Fix(ϕ) ≥ min{#Crit(H) : H a Morse function on M}.
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Chapter 3

Morse Theory

Lecture 10: 10 Feb
Motivations are conjectures of Arnold. Suppose (M,ω) is a closed symplectic
manifold. Suppose ϕ ∈ Ham(M,ω), i.e.

ϕ = ϕ1Ht
, Ht ∈ C∞(M × [0, 1]).

As previously seen. Arnold Conjectures:

1. #Fix(ϕ) ≥ min{#Crit(f) : f ∈ C∞(M)}. (The RHS is saying the mini-
mum over all arbitrary functions on M).

2. If Fix(ϕ) consists of non-degenerate fixed points (defined previously), then

#Fix(ϕ) ≥ min{#Crit(f) : f a Morse function on M}.

Remark. Suppose H ∈ C∞(M) (thinking about it as a Hamiltonian), then
ϕ1ε·H = ϕεH . Also,

Crit(H) = Crit(ε ·H).

For small ε,
Fix(ϕ1εH) = Fix(ϕεH) = Crit(H).

This is true locally, and true globally when the manifold is compact.
This is an evidence for the first Arnold conjecture.
Out-of-order remark: If Fix(ϕ1εH) are non-degenerate, thenH is a Morse

function, and we get evidence for the second conjecture.

3.1 Morse Functions
Suppose M is a closed, smooth manifold and f ∈ C∞(M). Suppose p ∈ Crit(f)
i.e. dfp = 0.
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Non-degeneracy of critical point (the following is a coordinate-free way
of defining this concept, some sources define it otherwise) We can consider the
Hessian of (f, p),

H = Hess(f, p) : TpM × TpM → R
a symmetric bilinear pairing. Then we will say p is (non)-degenerate according
to whether H is (non)degenerate.

We need to specify what H(Xp, Yp) is for Xp, Yp ∈ TpM . First we extend
both Xp, Yp to vector fields X,Y in a neighborhood of p. Consider the action
of X on f , X · f , in this neighborhood. That is, the directional derivative of f
in the direction of X. So for some point q in the neighborhood U ,

X · f(q) = dfq(Xq) ∈ R.
So X · f is a real valued function on U .

We can also consider Y · (X · f), again a real-valued function on U , which
we will use to define:

H(Xp, Yp) := Y · (X · f)(p).
Now why isH(Xp, Yp) independent of the choice ofX and Y (the extensions),

i.e. why is it tensorial; and why is it symmetric in its arguments?
First, note that

Y · (X · f)(p) = d(X · f)p (Yp),
so H(Xp, Yp) is at least independent of the choice of extension of Y (here p is
the specific p we started off with, not any arbitrary point in U ; thus Yp is always
the same for any extension). Similarly, if we define

H ′(Xp, Yp) = X · (Y · f)(p)

is independent of the choice of X. Thus,

H(Xp, Yp)−H ′(Xp, Yp) = Y · (X · f)(p)−X · (Y · f)(p) (3.1)
= [Y,X] · f(p) (3.2)
= dfp([Y,X]p) (3.3)
= 0 (p ∈ Crit(f)). (3.4)

This completes the proof that H does not depend on the extension (so well-
defined), and is symmetric (and bilinear).

Now Hess(f, p) has a signature (s, u, z) where

• s is the maximum dimension of a subspace of TpM on which H is positive
definite (H(x, x) > 0 ∀x ̸= 0). Here s stands for stable. Corresponding
to positive eigenvalues (dimension of eigenspace assocaited to them).

• u is the maximum dimension of a subspace of TpM on which H is negative
definite. Here u stands for unstable. Corresponding to negative eigenvalues
(dimension of eigenspace assocaited to them).

• z is the maximum dimension of a subspace of TpM on which H is zero.
Here z stands for zero. Corresponding to zero eigenvalues.

Then
s+ u+ z = dimTpM.

We say Hess(f, p) is non-degenerate if z = 0.
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Definition 8. A critical point p ∈ Crit(f) is non-degenerate if Hess(f, p) is
non-degenerate. In which case we call u the index of p:

ind(p) := u.

Lemma 1 (Morse Lemma). If p ∈ Crit(f), then there exists coordinates

g : Rn ⊃ V → U ⊂M

0 7→ p

such that

(f ◦ g)(x1, . . . , xn) = −(x21 + · · ·+ x2u) + (x2u+1 + · · ·+ x2x+s) + f(p).

If n = 2, we can draw out different local models for f . See Figure 3.1.

Definition 9. A function f ∈ C∞(M) is called a Morse function if Crit(f)
consists of only non-degenerate critical points.

Some basic facts:

• Crit(f) consists of isolated points if f : M → R is a Morse function. Hence
Crit(f) is finite for closed M .

• Being Morse is a generic condition in the sense that the space of Morse
functions is a dense open set in C∞(M) (or might be a countable inter-
section of these).

• Morse inequality (first pass): If f is a Morse function, then

#Crit(f) ≥
n∑
k=1

bk(M) = rankH∗(M,Z).

Basic reason why this should hold: there is a chain complex

CM∗(M,f, g)

(where g is an auxiliary metric), that is freely generated by the critical
points of f . In fact CMk(M,f, g) is freely generated by the index k critical
points. This chain complex’s homology computes H∗(M,Z).

Lecture 11: 13 Feb
Continuing Morse theory. Set-up: M is a smooth closed manifold, and f ∈
C∞(M), and we assume f is Morse.

The goal now is to prove the folowing Morse inequality:

#Crit(f) ≥ rankH∗(M ;Z)
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Figure 3.1: Various local models.
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Basic reason why this is true: there is a chain complex CM∗(M,f, g) such
that CMk(M,f, g) is freely generated by index-k critical points:

CMk(M,f, g) = Z · ⟨p⟩

where
p ∈ Crit(f), ind(p) = k.

Further,
HM∗(M,f, g) ∼= H∗(M,Z).

In fact, we will find a cell decomposition of M such that we get one k-cell for
each index-k critical point. Then CM∗(M,f, g) is the corresponding cellular
chain complex.

Recall if p is a critical point of f , there is a Hessian Hess(p, f) that is non-
degenerate; and we let (informally) k be the number of negative eigenvalues,
and n− k be the number of positive eigenvalues. Here n = dimM .

Recall also that Morse lemma says there exist coordinates x1, . . . , xn near p
sucgh that

f(x1, . . . , xn) = f(p)− (x21 + · · ·+ x2k) + (x2k+1 + · · ·+ x2n).

To write down the boundary operator in Morse homology, or the boundary
of the cells of the cell decomposition, we need an auxiliary choice of metric g.
This g allows us to convert f into a vector field called the gradient vector field
of f :

∇f = ∇gf.

This is uniquely defined by the condition

df = ι(∇f)g,

just using non-degeneracy of g. Since it is an auxiliary choice, we can choose
any g and for our purposes it’ll be as good as any other.

Denote by ϕt the time-t flow of∇f , for t ∈ R. By compactness ofM , it exists
for all time t ∈ R. Because the vector field is autonomous (time-independent),
this is a one-parameter subgroup

{ϕt} ⊂ Diff(M).

The identity
dϕt
dt

= (∇f) ◦ ϕt

holds for all x ∈M .
For reasons that will be clear later, we’d like to work with −∇f .
Also,

ϕt+s = ϕt ◦ ϕs
for all t, s ∈ R.

Recall that Hamiltonian flow preservesH; in contrast, here f is not preserved
by the flow because f decreases under negative gradient flow:

CHAPTER 3. MORSE THEORY 32



Lecture 11: 13 Feb

Figure 3.2: Negative gradient flow

Proposition 6. f decreases under negarive gradient flow.

Proof. Choose a flow line of −∇f , i.e. choose a differentiable map

γ : R→M

such that
dγ

dt
(t) = (−∇f) ◦ γ(t).

We want to show that
f ◦ γ : R→ R

is a decreasing function of t. To that end, consider its derivative

d(f ◦ γ)
dt

(t) = df

(
dγ

dt
(t)

)
(3.5)

= df(−∇f ◦ γ(t)) (3.6)
= ι(∇f ◦ γ(t))g(−∇fγ(t)) (3.7)
= −g(∇f ◦ γ(t),∇f ◦ γ(t)) (3.8)
≤ 0 negative-definiteness of g (3.9)

Note, equality folds if and only if

∇f ◦ γ(t) = 0

i.e. γ(t) is a critical point of f . If in fact γ(t) is a critical point, then
γ(s) = γ(t) for all s ∈ R, i.e. is constant. So either γ : R → M is a

CHAPTER 3. MORSE THEORY 33



Lecture 11: 13 Feb

constant map to a critical point, or else it is a non-constant flowline, and
in this case,

Im(γ) ∩ Crit(f) = ∅

and f ◦ γ(t) is strictly decreasing.
If γ is a flowline of −∇f , then

γ(t+ s) = ϕt ◦ γ(s).

Flow lines admit reparameterization: given any flow line γ : R→M of ∇f ,

γ̃(t) = γ(s+ t)

for some fixed s ∈ R, then γ̃ is a reparametrization of the same flow line.
Every point in M − Crit(f) lies on the image of a flow line which is unique

up to reparametrization. So if x ∈ M , then there exists a unique (up to
reparametrization) flow line

γx : R→M

of −∇f such that γx(0) = x.
Now suppose γ is a flow line, we ask: what is its limiting behavior? i.e. what

is
lim

t→±∞
γ(t)?

Does this limit exist?
Answer: Yes, the limit exists, and the limit is a critical point of f .

Proof. It suffices to show

∥∇f ◦ γ(t)∥2g = g(∇f ◦ γ(t),∇f ◦ γ(t))

tends to 0 as t→∞.
To show this, consider any pair of real values a < b. Consider

f(γ(b))− f(γ(a)) =
∫ b

a

df ◦ γ
dt

(t)dt (3.10)

= −
∫ b

a

∥∇f ◦ γ(t)∥2gdt (3.11)

so

f(γ(a))− f(γ(b)) =
∫ b

a

∥∇f ◦ γ(t)∥2gdt (3.12)

≥ (b− a) inf
t∈[a,b]

∥∇f ◦ g(t)∥2g (3.13)

so
f(γ(a)− f ◦ γ(b)

b− a
≥ inf
t∈[a,b]

∥∇f ◦ g(t)∥2g

hence
max(f)−min(f)

b− a
≥ inf
t∈[a,b]

∥∇f ◦ g(t)∥2g
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Set b = 2a and let a→∞ to get

0 = lim inf
t→∞

∥∇f ◦ g(t)∥2g

then add ε to get
lim
t→∞

γ(t) ∈ Crit(f).

Definition 10. For p ∈ Crit(f), define the stable manifold to be

Ws(p) =
{
x ∈M : lim

t→∞
γx(t) = p

}
,

and the unstable manifold to be

Wu(p) =

{
x ∈M : lim

t→−∞
γx(t) = p

}
.

Figure 3.3: Caption
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Wee see that topologically,

Ws(p),Ws(q) ∼= R0

Ws(r) ∼= R1

Ws(s) ∼= R2

3.2 Morse Homology

Lecture 11: 15 Feb
Set up is M a smooth closed manifold, and f a Morse function on M . If g is a
metric on M , we get a gradient vector field ∇gf (depends on g). It is implicitly
defined by the equation

df = ι(∇gf)g.

We can study the nagetive gradient flow of this vector field. It gives a one-
parameter subgroup

{ϕt} ⊂ Diff(M)

defined as such:
ϕ0 = Id

dϕt
dt

= −∇f ◦ ϕt.

(This {ϕt} is just the flow of −∇gf)
For all x ∈M , flowing along the gradient flow (in either direction):

lim
t→±∞

ϕt(x)

these limits exist and are critical points of f .
For each p ∈ Crit(f), we can consider its unstable and stable manifold,

defined previously.

Example (bumpy sphere). Morse function is height.
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Figure 3.4: Bumpy sphere.

Example (perfectly balanced torus). Morse function is height.

Theorem 6 (Thom). For any p ∈ Crit(f), the unstable manifold Wu(p) is
an open cell of dim = ind(p); and the stable manifold Ws(p) is an open
cell of dim = n− ind(p).

Hence there exists a diffeomorphism

ψ◦
p : int(B

k)→Wu(p)

where k = ind(p) and it extends uniquely to a smooth map

ψp : B
k →M

because the open cell is “attached” to M .

Corollary. The collection (ψp, B
k) for p ∈ Crit(f) gives a cell decomposition

of M .

We can calculate H∗(M ;Z) from this cell decomposition. As a consequence, we
get the Morse inequality

#Crit(f) = dimCM∗(M,f, g) ≥ dimH∗(M,Z)

here CM∗(M,f, g) is the affiliated cellular chain complex.

Tangent spaces There are nice descriptions for the tangent spaces at p:
TpWu(p) and TpWs(p), namely, that they intersect transversally:

Wu(p) ⋔Ws(p),

and they intersect precisely at p. To show this:
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We have two non-degenerate pairings, the Hessian

Hess(f, p) : TpM × TpM → R

and the metric
gp : TpM × TpM → R.

Now TpWu(p) is a distinguished maximal dimensional subspace of TpM on
which Hess(f, p) is negative definitive. Which one is it? There exist linear
isomorphisms

ΦH : TpM → T ∗
pM

vp 7→ ι(vp)Hess(f, p)

and

Φg : TpM → T ∗
pM

vp 7→ ι(vp)gp

Hence a linear isomoprhism

Φ−1
g ◦ ΦH : TpM → TpM

Exercise:
TpWu(p) = negative eigenspace of Φ−1

g ◦ ΦH

TpWs(p) = positive eigenspace of Φ−1
g ◦ ΦH

thus
TpWu(p)⊕ TpWs(p) = TpM

hence
Wu(p) ⋔Ws(p).

Issues:

1. How to see the boundary operator more explicitly?

2. We know H∗(CM∗(M,f, g)) is independent of the choice of f and g from
cellular/singular homology. But is there a way to see this internally to
Morse theory? i.e. not having to go through singular homology. The
answer is yes, and this informs invariance proofs in Lagrangian Fleor ho-
mology.

To address these issues, we will define CM∗(M,f, g) without reference to
cellular homology. To that end, we will need a restricted choice of metric.

Definition 11. If f : M → R is a Morse function, then a metric g on M is
called Morse-Smale (with respect to f) if

Wu(p) ⋔Ws(q)

for all p, q ∈ Crit(f).
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Note. cf. previous discussion which only involved one critical point, whereas
this definition involves two.

Observe. We can see that for the bumpy sphere, the g is Morse-Smale; however,
for the torus, the g is NOT Morse-Smale because Wu(q) is not transverse to
Ws(s).

Property. The Morse-Smale condition is generic.

Assuming g is Morse-Smale, then

M(p, q) :=Wu(p) ∩Ws(q)

is a smooth manifold, typically not compact, and could possibly be empty. Its
dimension, from the transversality condition, is

dimWu(p) + dimWs(q)− n = ind(p) + (n− ind(q))− n (3.14)
= ind(p)− ind(q). (3.15)

In fact this is a moduli space of flow lines:

M(p, q) =

{
x ∈M : lim

t→−∞
ϕt(x) = p, lim

t→∞
ϕt(x) = q

}
.

There is an R-action on M(p, q): for t ∈ R, and x ∈M(p, q),

t · x = ϕt(x)

(from x, flow for time t on its flow line).
Now define

M̂(p, q) :=M(p, q) /R
(thinking of this as modding out reparametrizations). It follows that

dimM̂(p, q) = ind(p)− ind(q)− 1.

Hence if
ind(p) = ind(q) + 1

then M̂(p, q) is finite set of points, and it is oriented(?). This leads us to define

∂(p) =
∑

q∈Crit(f)
ind(q)=ind(q)−1

#M̂(p, q) · q.

Lecture 13: 17 Feb
Set up: M is a closed smooth manifold, f : M → R a Morse function, and g a
Morse-Smale metric for (M,f): for all p, q ∈ Crit(f),

Wu(p) ⋔Ws(q).
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Hence
M(p, q) =Wu(p) ∩Ws(q)

is a smooth manifold, and there is a free and smooth R-action

t · x = ϕt(x)

for all t ∈ R and x ∈M(p, q) (provided p ̸= q). Dividing out the action:

M̂(p, q) =M(p, q) /R

is a smooth manifold of dimension ind(p)− ind(q)−1. This M̂(p, q) is the space
of unparametrized flow lines from p to Q.

If ind(p)− ind(q) = 1, then M̂(p, q) consists of finitely many points (“points”
are unparamterized flow lines). If we orient everything, we can think of these
points having either + or − attached to it. In this case we can define a number

n(p, q) := #M̂(p, q)

for each pair (p, q) with index difference 1. This number is an integer, and if we
are careful with orientations. If not, it is well-defined mod 2.

Example (bumpy sphere).

Now let CM∗(M) be the free abelian group (or, if we are being lazy, the
F2-vector space) generated by Crit(f). So CMk(M,f, g) is freely generated by
the p ∈ Crit(f) where ind(p) = k, Now to define the differential: for p ∈ Crit(f),

∂(p) =
∑

q∈Crit(f)
ind(q)=ind(q)−1

n(p, q) · q.

Example.
∂(a) = c, ∂(b) = c, ∂(c) = d− d = 0.

Theorem 7. ∂2 = 0, so (CM∗(M,f, g), ∂) is a chain compelx.

One proof of the Theorem is to check that ∂ matches the differential on
cellular chain complex CC∗(M,f, g), from the earlier point of view. However,
we want a proof internal to Morse homology.

Remark. The dots-and-arrows picture of CM∗(M,f, g, ) exactly matches
the picture of critical points and index-one flow lines on M :

pic

3.3 Poincare Duality
We would like to see Poincare Duality in Morse homology.
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From the dots-and-arrows picture of the chain complex, we can directly sefine
cochains

CM∗(M,f, g)

graphically, by reversing the arrows:
Then

H∗(M) = H∗(CM
∗(M,f, g)).

Observe.
CM∗(M,f, g) = CM∗(M,−f, g).

And notice
ind(p, f) + ind(p,−f) = n

since
ind(p, f) = dimWu(p, f)

and
ind(p,−f) = dimWu(p,−f) = dimWs(p, f).

Consequently,
H∗(M) ∼= Hn−∗(M).

Hence Poincare Duality comes from turning f upside down.

3.4 Why ∂2 = 0

Fix a creitical point p ∈ Crit(f). Then

∂2(p) =
∑
q∈Crit

ind(q)=ind(p)−1

n(p, q) · ∂q (3.16)

=
∑

q∈Crit(f)
ind(q)=ind(p)−1

∑
r∈Crit(f)

ind(r)=ind(p)−2

n(p, q) · n(q, r) · r (3.17)

Key idea: for p, r ∈ Crit(f) where ind(p)− ind(r) = 2, we can compactify

M̂(p, r)

the space of unparametrized index-2 flow lines, by adding in

∂M̂(p, r) =
⋃

q∈Crit(f)
ind(q)=ind(p)−1=ind(r)+1

M̂(p, q)× M̂(q, r).

Then
M(p, r) := M̂(p, r) ∪ ∂M̂(p, r)

Upshot: M(p, r) is a compact oriented 1-manifold, with interior M̂(p, r).
Trivial fact: the signed count of boundary components of a 1-manifold is

zero.
On the other hand, the signed count is exactly:
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Morse homology. Today’s goal: invariance. As always, M is a smooth closed
manifold, f : M → R is a Morse function, and g a Morse-Smale metric for
(M,f).

Definition 12. For all p, q ∈ Crit(f),

M(p, q) =
⋃
M̂(r1, r2)× · · · × M̂(rk−1, rk)

the union is over all k ≥ 2 and all k-tuples r1, r2, . . . , rk ∈ Crit(f) such
that r1 = p and rk = q.

Here M̂(rj , rj+1) is the moduli space of unparametrized flow lines:

M̂(rj , rj+1) =M(rj , rj+1) /R .

Example (bumpy sphere).

M̂(a, d) = M̂(a, d) ∪ M̂(a, c)× M̂(b, c) (3.18)

and here M̂(a, c)× M̂(b, c) is precisely

{γ̂1} × {γ̂2 × γ̂3}

Proposition 7.M(p, q) is a compact manidold of dimension

ind(p)− ind(q)− 1

with interior M̂(p, q).
Elements of the boundary ∂M(p, q) are (unparamterized) broken flow

lines from p to q.

In particular, when # ind(p)− ind(q) = 2, M(p, q) is a compact 1-manifold
with boundary. It was in this setting that we showed ∂2 = 0 on CM∗(M,f, g).

If ind(p)− ind(q) > 2, then M(p, 1) is stratified.

Example. If ind(p)− ind(q) = 3, then

Philosophy: to define differentials, chain maps, chain homotopies, etc. We
count elements in suitable moduli spaces. For example, the differential ∂ we had
before; and to prove properties, we should the examine boundaries of moduli
spaces.

To prove the Proposition requires

• compactness, and

• gluing.

compactness Given a sequence γ̂1.γ̂2, · · · ∈ M̂(p, q), there exists a convergent
subsequence with limit γ̂ ∈ M̂(p, q) or δ̂ ∗ ε̂ ∈ ∂M(p, q) or a concatenation of
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more than two. Note that ∗ means to concatenate paths.
To say that

γ̂n → δ̂ ∗ ε̂

means there exist parametrizations γn(t), δ(t), ε(t), and sequences of real num-
bers an, bn ∈ R such that

γn(t− an)→ δ(t)

and
γn(t− bn)→ ε(t)

where convergence is uniform on compact subsets, in other words, convergence
is in C∞

loc.

gluing Given

δ̂1 ∗ · · · ∗ δ̂k−1 ∈ M̂(r1, r2)× · · · × M̂(rk−1, rk)

you can approximate it arbitrarily well by

γ̂ ∈ M̂(p, q)

where p = r1, q = rk.

3.5 Invariance
Problem. Given (f0, g0) and (f1, g1) choices of (Morse function, Morse-Smale
metric) on M , why should

HM∗(M,f0, g0) ∼= HM∗(M,f1, g1).

This is the problem of invariance of Morse homology.

To that end we will define a chain map

ψ : CM∗(M,f0, g0)→ CM∗(M,f1, g1).

Next time we will check the induced map of this chain map on homology is an
isomorphism.

The idea is to connect (f0, g0) and (f1, g1) through a family (ft, gt), 0 ≤ t ≤ 1
where each

ft : M → R

is a smooth function, and each gt is a metric on M . In a generic family,

1. ft is a Morse function for all but finitely many t,

2. gt is Morse-Smale for (M,ft) for the same all but finitely many t,

3. moreover, the following construction has the stated properties:
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pic
Want to define, for each p0 ∈ Crit(f0),

ψ(p0) =
∑

q1∈Crit(f1)

n(p0, q1) · q1

for some suitable coefficients n(p0, q0).
Form a kind of gradient-like vector field for {(ft, gt)} on M × I and define

n(p0, q1) as a signed count of flow lines.
Without checking details, define

V ∈ Vect(M × [0, 1])

to interpolate from ∇g0f0 to ∇g1f1 as follows: pick a smooth function

β : [0, 1]→ R≥0

such that β(0) = 0, β(1) = 0, and β(t) > 0 for 0 < t < 1
(component of V in the ∂

∂t direction). Now for x ∈M , t ∈ [0, 1],

V (x, t) = ∇gtft(x) + β(t) · ∂
∂t
.

M(p0, q1) = {γ : R→M × [0, 1] : }

Proposition 8. For generic {(ft, gt)},

Lecture 15: 22 Feb
Goal: define a quasi-isomorphism (chain map that induces isomorphism on ho-
mology)

ψ : CM∗(M,f0, g0)→ CM∗(M1, f1, g1).

Interpolate by (ft, gt), 0 ≤ t ≤ 1 of (smooth function,metric)’s. We deill define
a gradient-like vector field on M × [0, 1] by

V (x, t) := β(t)
∂

∂t
+∇gtft

where
β : [0, 1]→ RR≥0

such that β(t) = 0 if and only if t = 0, 1. The zeroes, i.e. critical points of V
are Crit(f0)× 0 and Crit(f1)× 1. Picture:

pic
Critical points have indices just like before, equal

dimWu(p,−V )

where p is a critical point of V . If p0 ∈ Crit(f0) and q1 ∈ Crit(f1), then (p0, 0)
has index ind(p0) + 1, and (q1, 1) has index ind(q1).
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Let ϕt denote the time-t flow of −V . Suppose

γ : R→M × [0, 1]

is a flow line of −V , i.e.:
dγ

dt
= −V ◦ γ.

We have
lim

t→±∞
γ(t)

are critical points of −V , just as before (exercise). Hence either

• Im(γ) ⊂M × 0 and γ is a flow line of −∇g0f0

• Im(γ) ⊂M × 1 and γ is a flow line of −∇g1f1

• lim
t→−∞

γ(t) =

We can now define for p0 ∈ Crit(f0), q1 ∈ Crit(f1),

M(p0, q1) := {}

Proposition 9.M(p0, q1) is a smooth manifold for all p0, q1, for generic
{(ft, gt)}; of dimension

dimM(p0, q1) = ind(p0) + 1− ind(q1).

Definition 13.
M̂(p0, q1) :=M(p0, q1)/R

(mod out reparametrization). Then

dimM̂(p0, q1) = ind(p0)− ind(q1).

Define
ψ : CM∗(f0, g0)→ CM∗(f1, g1)

on generators by

ψ(p0) =
∑

q1∈Crit(f1),ind(q1)=ind(p0)

#M̂(p0, q1) · q1.

To prove firstly that ψ is a chain map, we compactify the moduli spaces and
study their boundaries. For p0 ∈ Crit(f0), and q1 ∈ Crit(f1), we compactify
M̂(p0, q1) by adding in all unparametrized broken flow lines of −V from (p0, 0)
to (q1, 1):

pic

M(p0, q1) =
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Proposition 10.M(p0, q1) is compact with sated interior and bounary.

Corollary. If ind(p0) = ind(q1)+1, thenM(p0, q1) is a compact 1-manifold
with boundary all broken flow lines of the form

M̂(p0, r0)× M̂(r0, q1)

where
ind(p0)− ind(r0) = 1.

ind(r0) = ind(q1)

Lecture 16: 24 Feb
Suppose (f0, g0), (f1, g1) are two choices (Morse function, Morse-Smale metric)
on M (closed and smooth). Suppose (ft, gt) and (f ′t , g

′
t) are two different inter-

polations between (f0, g0) and (f1, g1). Then we described: there exist affiliated
chain maps

ψ,ψ′ : CM∗(M,f0, g0)→ CM∗(M,f1, g1).

The goal: show ψ and ψ′ are chain homotopic, i.e. there exist

H : CM∗(M,f0, g0)→ CM∗∗(M,f1, g1)

such that
H∂0 + ∂1H + ψ + ψ′ = 0

so (mod 2, if not careful about orientations), ψ and ψ′ are chain homotopic.
We can interpolate the interpolations: there exists a family (fst , g

s
t ), 0 ≤ t ≤

1, 0 ≤ s ≤ 1, such that

• (fs0 , g
s
0 = (f0, g0)

• (fs1 , g
s
1) = (f1, g1)

• (f0t , g
0
t = (ft, gt)

• f ′t , g
′
t) = (f ′t , g

′
t)

Picture:
The critical points Crit(−V ), i.e.

Crit(−V ) = {(x, s, t) : M ×B : − V (x, s, t) = 0}

must satisfy
Crit(f0)×N ∪ Crit(f1)× S.

Then
ind−V (p0, N) = indf (p0) + 2

ind(q1, S) = ind(q1).
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Proposition 11. For p0 ∈ Crit(f0) and q1 ∈ Crit(f1), let

M(p0, q1) =

{
x ∈M ×B : lim

t→−∞
ϕ−Vt (x) = (p0, N), lim

t→+∞
ϕ−Vt (x) = (q1, S)

}
.

And define
M̂(p0, q1) :=M/R.

Then for generic (fst , gst ) interpolating generic (ft, gt) and (f ′t , g
′
t), M̂(p0, q1)

is a smooth manifold of dimension

ind(p0)− ind(q1) + 1

Define
H : CM∗(f0, g0)→ CM∗+1(f1, g1)

on generators by

H(p0) =
∑

q∈Crit(f1)
ind(q1)=ind(p0)+1)

#M̂(p0, q1) · q1.

Proposition 12. There exists a compactificationM(p0, q1) by “broken” flow
linesof −V from p0 to q1.

If dimM(p0, q1) = 1 then its boundary consists of

1. M̂(p0, r0)× M̂(r0, q1) for all r0 ∈ Crit(f0) such that

dimM̂(p0, r0) = dimM̂(r0, q1)

i.e.
ind(r0) = ind(p0)− 1 = ind(q1) + 1

Hence ∑
r0∈Crit(f0)

ind(r0)=ind(p0)−1

#(M̂(p0, r0)× M̂(r1, q1))

equals the coefficients of q1 in H ◦ ∂0(p0).

2. ⋃
r1

M̂(p0, r1)× M̂(r1, q1)

where the union is over all r1 Crit(f1) of

ind(r1) = ind(p0)− 1 = ind(q1) + 1.

The number of this is the coefficient of q1 in ∂ ◦H(p0)

3. Breaking on front. The coefficient of q1 in ψ(p0) counts # of points in this
piece of boundary.
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4. Breaking on back. The coefficient of q1 in ψ′(p0) counts # of points in
this piece of boundary.

For all (f0, g0), (f1, g1), there exists a preferred isomorphism

ψ01
∗ : HM∗(M,f0, g0)→ HM∗(M,f1, g1)

such that for all (f2, g2),
ψ02
∗ = ψ12

∗ ◦ ψ01
∗

Define

HM∗(M) ⊂
∏

(f,g) is
(Morse function, Morse-Smale metirc)

HM∗(M,f, g)

Lecture 17: 27 Feb

3.6 The Morse Product
Let M be a smooth closed manifold. Recall, cup product on ordinary cohomol-
ogy:

⌣ : Ha(M)⊗Hb(M)→ Ha+b(M)

Interpretation: if α ∈ Ha(M) and β ∈ Hb(M), then PD[α] ∈ Hi(M), and
PD[β] ∈ Hj(M), where i = n − a, j = n − b. Imagine representing these
homology classes by submanifolds A and B, respectively. Position A and B
transversally to one another to get C = A ∩B a smooth manifold of dimension
i+ j − n:

codim(C,A) = codim(B,M)

dimA− dimC = dimA− dimB

vdots

Now
PD[α ⌣ β] = [C]

thus
α ⌣ β ∈ H2n−i−j(M) = Ha+b(M).

Hence by taking Poincare duals, we can view cup product as a product on
homology, i.e. the intersection product :

Hi(M)⊗Hj(M)→ Hk(M)

where i + j − k = n. The unit for the intersection product is the fundamental
class [M ] ∈ Hn(M),

Suppose (f, g) is chosen for M as in Morse homology. Which cycle (in Morse
homology) represents [M ] (in ordinary homology)?

[M ] is represented by
∑

p∈Critn(M)

p

Notation. Spec(f) := {f(p) : p ∈ Crit(f)})
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Why is it a cycle?

∂
∑

p∈Critn(M)

p =
∑

q∈Critn−1(f)

nq · q

Want to show: n+ q = 0. Ws(q) is 1-dimensional, thus there exist two index-1
flow lines into q from the maxima of f .

To define the cup product in Morse homology Define a chain level
product

m : CMi ⊗ CMj → CMk

by choosing a generic triple (f0, g0), (f1, g1), (f2, g2), and defining

m : CM1(f0, g0)⊗ CMj(f1, g1)→ CMk(f2, g2).

Given p0 ∈ Crit(f0), p1 ∈ Crit(f1), let

m(p0, p1) =
∑

p2∈Crit(f2)
ind(p0+ind(p1)=n+ind(p2)

n(p0, p1, p2) · p2

where
n(p0, p1, p2) = #M(p0, p1, p2).

For pi ∈ Crit(fi), i = 0, 1, 2,

M(p0, p1, p2) = pic

Proposition 13. For a generic (fi, gi), i = 0, 1, 2,M(p0, p2, p2) is a manifold
of dimension

ind(p0) + ind(p1)− ind(p2)− n.

So if ind(p0)+ ind(p1)− ind(p2)−n = 0, thenM(p0, p1, p2) is a 0-manifold and

#M(p0, p1, p2) ∈ Z.

Remark. There is no R-action to divide out.

We want to show m obeys the Leibniz rule in order to get an induced product
on homology; WTS:

∂2 ◦m(p0, p1) = m(∂0p0, p1) +m(p0, ∂1p1)

Proposition 14. For all p0, p1, p2, there exists a compactification ofM(p0, p1, p2)
by “broken Y’s”:

If dimM(p0, p1, p2) = 1, then ∂M(p0, p1, p2) consists of broken Y s of the forms
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Hamiltonian Floer Homology

Lecture 18: 1 Mar
Towards Hamiltonian Floer homology. A few structures on C:

v = x1 + iy1, w = x2 + iy2 ∈ C.

There is an endomorphism J : C→ C:

J(v) = i · v.

The key property is that
J2 = − Id .

More generally, if E → M is a vector bundle over a smooth manifold, and
J ∈ End(E) i.e.

J : Ep → Ep ∀p ∈M
varying smoothly with p. If this J satisfies J2 = − Id, then we call J an almost
complex structure. So in the previous setting, J is an almost complex structure
on the tangent bundle.

There is a Hermitian product

H(v, w) = v · w.

If we write out in coordinates,

H(v, w) = v · w (4.1)
= (x1 + iy)(x2 − iy2) (4.2)
= (x1x2 + y1y2) + i(x1y2 − y1x2) (4.3)
= g(−→v ,−→w ) + iω(−→v ,−→w ) (4.4)

where g is the standard metric on R2 and ω is the standard symplectic form on
R2:

ω(−→v ,−→w ) = det

(
x1 x2
y1 y2

)
.

Fundamental property:
ω(v, J · w) = g(v, w).
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Definition 14. A Kahler manifold is a complex manifold with affiliated
almost complex structure J , symplextic form ω, andg, satisfying

ω(·, J ·) = g(·, ·).

Example. Cn, CPn, and complex algebraic varieties

Given (M,ω) a symplextic manifold, and J an a.c.c. on M such that the relation
holds, i.e. ω(·, J ·) is a metric, we say J is compatible with ω.

Goal: estimate #Fix(ϕ) where ϕ ∈ Ham(M,ω). Recall: ϕ is the time-1 flow
of a time-dependent Hamiltonian

H = Ht ∈ C∞(M × [0, 1]).

We will request that Ht is 1-periodic. So

H = Ht ∈ C∞ (M × R /Z
)
.

Recall also that Fix(ϕ) is in one-to-one correspondence with closed orbits of
ϕtHt

, 0 ≤ t ≤ 1.
We had a way to characterize this: there is the action functional

A = AHt
= AH : LM → R

where
L(M) = {contractible loops γ : R/Z→M}.

The action functional is defined by

A(γ) =
∫ 1

0

Ht ◦ γ(t)dt+
∫
D2

γ̂∗ω︸ ︷︷ ︸
symplectic area

where γ̂ is the “capping”: γ̂ : D2 →M such that γ̂
∣∣
∂D2 = γ.

Exercise: relate this to the earlier action we wrote down for an exact (M,ω).
To guarantee that A is independent of the choice of capping γ̂, we could

assume π2(M) = 0, or [ω] · π2(M) = 0. This is the condition of M being
symplectically aspherical.

Proposition 15.

Crit(AHt
) = {contractible closed orbits of ϕtHt

, 0 ≤ t ≤ 1}

Goal (Arnold Conjecture plus some conditions): #Crit(AHt) ≥ dimH∗(M ;F2).
We’d like to interpret A as a Morse function on L(M). Then do Morse

homology with it to conclude

#Crit(A) ≥ dimH∗(L(M),F2) = dimH∗(M,F2).

Exercise: Prove L(M) is homotopy equivalent to M .
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We need a metric on L(M) and study gradient flow of A with respect to
the metric. What is a suitable metric? The metric is a positive definite inner
product on the tangent spaces

TγL(M)

which has to vary smoothly in γ. (Recall) Given X,Y ∈ TγL(M) we want to
define

⟨X,Y ⟩.
We write X = Xt, and Y = Yt where t ∈ R/Z, such that Xt, Yt ∈ Tγ(t)M .

pic
i.e. X and Y are vector fields on

γ∗TM

Suppose we choose a metric g on M . Define ⟨·, ·⟩ on the loop space L(M)
by integrating:

⟨X,Y ⟩ :=
∫ 1

0

g(Xt, Yt)dt.

Remark. If we had a time dependent family of metrics gt we could also
define this (just adding the additional t’s for the gs).

We need to define the gradient of A with respect to this metric: ∇⟨·,·⟩A, and
then study for

u : Rs → L(M),

du

ds
−∇⟨·,·⟩A ◦ u(s).

gradient flow???

Lecture 19: 3 Mar
Edit of last time: we wete considering H(v, w) = v · w,

H(v, Jw) = −i ·H(v, w)

writing out in real and imaginary parts, the LHS is

g(v, Jw) + i · ω(v, Jw)

and the RHS is
ω(v, w)− i · g(v, w)

????
Set-up: (M,ω) is closed symplectic manifold, and

H = Ht ∈ C∞ (M × R /Z
)

and suppose Fix(ϕ1H) consists of non-degenerate fixed points. Goal is to prove

#Fix(ϕ1H) ≥ dimH∗(M)
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assuming e.g. π2(M) = 0.
We observe Fix(ϕ1H) are in one-to-one correspondence with Crit(AH). And

now we want to do Morse homology with AH on L(M). This involves putting
a metric ⟨·, ·⟩ on AH and studying (negative) gradient flow. We defined the
metric last time, i.e. first by picking a g on M , and then....

We will only consider g is of the form

g(v, w) = ω(v, Jw)

where J is an almost complex structure on M . So

⟨X,Y ⟩ =
∫ 1

0

ω(Xt, Jyt)dt.

So the gradient will be
∇⟨·,·⟩AHt = ∇A

is defined implicitly by
dA = ⟨∇A,−⟩.

Recall:

(dA)γ(Y ) =

∫ 1

0

ω

(
dγ

dt
(t)−XHt

◦ γ(t), Yt
)
dt

recovers the correspondence

Crit(A)↔ closed Hamiltonian orbits.

Going back to what we want,

⟨∇A, Y ⟩ =
∫ 1

0

ω(∇A)γ(t), J · Yt)dt

where (∇A)γ(t) is the tangent vector to M at γ(t). This is equal to

=

∫ 1

0

(−J(∇A)γ(t), Yt) (4.5)

using the symmetry and metric and the skew-symmetry of ω.
Now because ω is non-degenerate and Yt is arbitrary,

dγ

dt
(t)−XHt

◦ γ(t) = −J · (∇A)γ(t)

hence
(∇A)γ(t) = J ·

(
dγ

dt
(t)−XHt

◦ γ(t)
)

What is the (negative) gradient flow equation? Recall, in the finite
dimensional case, it is γ : R→M satisfying

dγ

dt
(t) = −∇gf ◦ γ(t).

Translated to our setting, we obtain

u : Rs →M
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such that
du

ds
(s) = −∇A ◦ u(s)

picture is a cylinder.
i.e.

du

ds
(s, t) = −∇A ◦ u(s, t) = −J

(
dγ

dt
(t)−XHt

◦ γ(t)
)

where γ9t) = u(s, t).
Rearranged, with γ = u(s, ·), we get

∂u

∂s
(s, t) + J ·

(
∂u

∂t
(s, t)−XHt

◦ u(s, t)
)

= 0

abbreviated as
∂su+ j · (∂tu−XHtu) = 0

holds for all (s, t) ∈ R× (R/Z).
Note is Ht is constant, then this reduces to

∂su+ J · ∂tu = 0.

This is the Cauchy-Riemann Equation for a cylinder

u : R× R /Z → (M,J).

To justify the name,
u : C ⊃ Ω→ C

is holomorphic if and only if

∂su+ J · ∂tu = 0

where J denotes the standard almost complex structure on C (i.e. multiplication
by i) using complex coordinate z = s+ it.

∂su+ j · (∂tu−XHt
u) = 0

is often called teh Cauchy-Riemann Floer Equation (CRF).
There is a trick due to Gromov to convert CRF into a Cauchy-Riemann

equation using a time-dependent almost complex structure:

∂sũ+ J̃t∂tũ = 0.

Where we are headed: we will build a chain complex freely generated by

Crit(A)↔ closed Hamiltonian orbits

and whose differential counts certain so-called pseudoholomorphic cylinders:

∂γ =
∑
γ′

n(γ, γ′) · γ′.
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Setting: (M,ω) closed symplectic manifold, and H = Ht ∈ C∞(M × ×R/Z) a
time-dependent Hamiltonian which is 1-periodic. We are interested in

Orb(H) = {γR/Z→M | dγ
dt

(t) = XHt
◦ γ(t)}

the 1-periodic orbits, or loops in M that satisfy Hamilton’s equation (we also
impose contractibility of γ). We showed, under assumption of symplectic fillable,
this set is equal to Crit(AH), which is ⊂ Fix(ϕ1Ht

) (? make sure).
Assume that all γ ∈ Orb(H) are non-degenerate. Recall, that this means

the graph of ϕ1Ht
,

Γ(ϕ1Ht
) = {(x, ϕ1Ht

(x)) | x ∈M} ⊂M ×M

is transversal to the diagonal {(x, x) | x ∈M}.

Idea. Do Morse theory with

AH : L(M)→ R.

To do so, we picked an almost-complex tructure J on M which is compatible
with ω in the sense that

g(·, ·) = ω(·, J ·)

defines a metric on M .
We then get a metric ⟨·, ·⟩ on L(M), and a gradient ∇AH defined with the

metric and the negative flow equation:

u : Rs → L(M)

smooth, such that
du

ds
(s) = −∇A ◦ γ(s).

Unpacking this gives

∂u

∂s
+ J

(
∂u

∂t
−XHt

◦ u
)

= 0

the Cauchy-Riemann-Floer equation, a.k.a. the perturbed Cauchy-Riemann
equation.

Exercise: See that
∂u

∂s
+ J

(
∂u

∂t

)
= 0

for
u : R× R /Z → C

and J being multiplication by i, is exactly the Cauchy-Riemann equaitons; that
is, u obeys the Cauchy-Riemann equations if and only if u is holomorphic.

Problem. Some issues with doing Morse theory in this setting:
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1. By contrast with the negatie gradient equation on a finite-dimensional
manifold, it is not in general possible to solve the negative gradient flow
equation for given initial data u(0) = γ ∈ L(M) (analog in finite-dimensions
is that given any point on the manifold, by the existence and uniquness
of oslutions to ODEs there always a path? with this initial condition so
each point sits in some unstable manifold). This obsticle was noted prior
to Floer by Moser. Thus, there is no globally defined flow ϕs, s ∈ R on
L(M). Because CRF is in unsolvable in general, we cannot decompose
L(M) into unstable manifolds such as

W (γ0) = {γ ∈ L(M) | lim
s→−∞

ϕs(γ) = γ0}

for γ0 ∈ Crit(AH).

2. These unstable manifolds W (γ0) are typically infinite-dimensional. This
causes difficulties in defining index ind(γ0). Similarly, the stable manifolds
are typically infinite-dimensional, making it doubtful thatWu(γ0)∩Ws(γ1)
is finite-dimensional.
Given u(·) : R→ L(M) satisfying CRF, then for any s ∈ R, then

u(s+ ·) : R→ L(M)

also obeys CRF.
A better way to define W (γ0) is

W (γ0) :=
{
u ∈ L(M) | u satisfies CRF; lim

s→∞
u(s)γ0

}
.

S the flow ϕs is defined on W (γ0) by

ϕs(u(·)) = u(s+ ·).

3. Given u : R→ L(M) obeying CRF,

lim
s→±∞

u(s)

may not converge.

Floer overcame those issues by mimicking Morse homology. For a given pair
γ0, γ1 ∈ Orb(Ht), define the moduli space

M(γ0, γ1) := {u : R→ L(M) | u satisfies CRF; lim
s→−∞

u(s) = γ0, lim
s→∞

u(s) = γ1}.

This admits an R-action:
s · u(·) = u(s+ ·).

So we can define the divided/unparametrized moduli space

M̂(γ0, γ1) =M(γ0, γ1) /R .

We alos need an analog of the Morse-Smale condition on our choice of almost-
complex structure, in order to ensure these (divided moduli spaces) are finite-
dimensional manifolds. TO accomplish that, we need to allow J to have a
t-dependence J = Jt. Then all the M̂(γ0, γ1) are finite-dimensional manifolds.
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Now define
CF (M,ω,H, J)

to be the F2 vector space finitely generated by Crit(AH).
Define ∂CF → CF by, for γ0 ∈ Crit(AH),

∂(γ0) =
∑

γ1∈Crit(AH) : dimM̂(γ0,γ1)

#M̂(γ0, γ1) · γ1.

Theorem 8 (Floer). Suppose that

• (M,ω) closed symplctic manifold.

• π2(M) = 0.

• H ∈ C∞(M × R/Z)

• all closed orbits are non-degenerate

• J = Jt is a generic times-dependent a.c.s. on M compatible with ω
(analog of Morse-Smale condition)

Then

• ∂2 = 0, so we get a chain complex

• The chain homotopy type is independent of (H,J)

• there exists a specific time-independet (H,J) ssuch that

– H is a Morse function on M

– g9·, ·) = ω(·, J ·) is Morse-Smale with respect H

– CF (M,ω, J,H) ∼= CM(M,H, g)

Consequently,

#Orb(H) = $Crit(AH) ≥ dimHM∗(M ;F2) = dimH∗(M ;F2)

Lecture 21: 15 Mar
Recap:

• (M,ω) a closed symplectic manifold

• π2(M) = 0

• H = Ht ∈ C∞(R× R/Z)

• Orb(H) are the closed contractible orbits, and we assume all are non-
degenerate

• J = Jt smooth, time-dependent almost-complex structure on M compat-
ible with M
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Cauchy-Riemann-Floer Equation:

u : Rs → L(M)

∂su+ Jt(∂tU −XHt ◦ u) = 0.

For a pair of orbits γ0, γ1 ∈ Orb(H), we defined M(γ0, γ1), which has an R-
action:

s · u(·) = u(s+ ·).

Then we defined M̂ .

Theorem 9. For generic Jt (analog of Morse-Smale condition), M̂(γ0, γ1)
is a smooth manifold for all γ0, γ1 ∈ Orb(H). Moreover,

dim M̂(γ0, γ1) = µ(γ0)− µ(γ1)− 1

for a suitable Maslov index µ (to be defined later).

Given such a choice J = Jt, define

CF (M,ω,H, J) = F2 ·Orb(H)

and define the boundary operator

∂ : CF (M,ω,H, J)→ CF (M,ω,H, J)

bia
∂(γ0) =

∑
γ1∈Orb(H)

µ(γ1)=µ(γ0)−1

#M̂(γ0, γ1) · γ1.

Theorem 10. 1. ∂2 = 0 so CF∗(M,ω,H, J) is a chain complex.

2. The chain homotopy type is independent of (H,J).

3. There exist time-independent (H,J) such that

CF∗(M,ω,H, J) ≈ CF∗+n(M,H, g)

(M =M2n) where g(·, ·) = ω(·, J ·). Hence

#Orb(H) ≥ dimH∗(M ;F2).

4.1 Almost Complex Structures
Let M be a smooth manifold. An almost complex strcuture on M is an element
J ∈ End(TM) such that J2 = − Id. If (M,ω) is a symplectic manifold, we say
an almost complex structure J on (M,ω) is compatible with ω if

g(v, w) = ω(v, Jw)

defines a metric, i.e.
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• ω(v, Jv) ≥ 0 with equality if and only if v = 0

• ω(v, Jv) is symmteric, which is equivalent to: J preserves ω i.e.

ω(v, w) = ω(Jv, Jw).

Definition 15. Denote by J(M,ω) the space of all smooth almost complex
structures on M which are compatible with ω.

Theorem 11. For any (M,ω), the space J(M,ω) is non-empty and con-
tractible.

The contractibility condition is useful to choose some J as acuxilliary data and
used for prooving maps between different choices.

Proof. We first work fiberwise. Fix any x ∈M and consider

{Jx : TxM → TxM}

where

• J2
x = Id

• ωx(vx, wx) = ω(Jxvx, Jxwx)∀vx, wx ∈ TxM

• ω(vx, Jvx) ≥ 0 and equality iff. vx = 0.

WTS: prove this Jx(M,ω) is non-empty and contractible. This is the crux
of the argument, it will be followed by standard differential topology.

By linear Darboux, we can identify (symplectomorphism)

(TxM,ω) ∼= (R2n, ω0).

So now it suffices to show J0(R2n, ω0) is non-empty and contractible.
There exists a basis x1, . . . , xn, y1, . . . , yn for R2n with dual basis dx1, . . . ,dxn,dy1, . . . ,dyn

and

ω0 =

n∑
i=1

dxi ∧ dyi.

In this basis, given vectors v⃗, w⃗ ∈ R2n,

ω0(v, w) = vT
(

0n×n Idn×n
− Idn×n 0n×n

)
w = J0

Note, J2
0 = − Id. It follows that −J0 ∈ J0(R2n, ω0). Check

•
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•

ω0(−J0v,−J0w) = vTJT0 J0J0w (4.6)

= vT (−J3
0 )w (4.7)

= vTJ0w (4.8)
= ω0(v, w) (4.9)

• ω(v,−J0, v) = vTJ0(−J0)v = vT v.

Pick J ∈ J0(R2n, ω0), i.e.

•

Consider

(J0J)
T = JTJT0 (4.10)

= −JTJ0 (4.11)
a.c.s.
= JTJ0J

2 (4.12)
symmetry

= J0J (4.13)

this shows J0J is a symmetric positive definite matrix, and it is in Sp(2n).

Lecture 22: 17 Mar
Setting: (M,ω) symplectic manifold, denote by J(M,ω) the set of smooth al-
most complex structures on M that are compatible with ω. Main Theorem:
J(M,ω) is non-empty and contractible.

Steps of proof:

1. We show that
J0(R2n, ω0)

is non-empty and contractible. Recall, for v⃗, w⃗ ∈ R2n, ω(v, w) is vTmatrixw.

J0(R2n,ω0 = {j ∈ End(R2n) |

• J2 = − Id (a.c.s.)
• JTJ0J = J0 (J is symplectic)
• J0J is positive definite}

Bullet points two and three together is equivcalent to ω0(v, Jw) is a metric.
Aside: Hermitian form on R2n = Cn:

H(v, w) = vTw.

Unitary group

U(n) = {A ∈ End(R2n) | A∗H = H}

where A∗H = H is equivalent to

H(Av,Aw) = H(v, w)∀v, w.
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Fact. a.c.s. + symp ⇒ J0J is symmetric, i.e. (J0J)
T = J0J . Also symplectic

because symplectic matrices form a group.

So we have a map

J0(R2n, ω0)→ P(R2n, ω0) = {symmetric positive definite symplectic matrices}

J 7→ J0J

−J0P ← [ P.

We can check this is one-to-one correspondence. In face it is a diffeomorphism.
Goal now: To show P(R2n, ω0) is contractible. The reason is that P(R2n, ω0) ⊂

P(R2n), the set of positive definite symmetric matrices. Then contractivle con-
traction preseves P(R2n, ω0).

P ∈ P(R2n), diagonalize:

P = S−1 · diag(λ1, . . . , λ2n) · S

where λi ∈ R≥0, S ∈ GL(2n,R).
For α ≥ 0, define

Pα = S−1 · diag(λα1 , . . . , λα2n) · S.

Check: independent of diagonalization. Now

Pα ∈ P(R2n)∀α.

Define
ft : P(R2n)→ P(R2n)

via
ft(P ) = P t, 0 ≤ t ≤ 1.

This is a deformation retract of P(R2n) to the identity. FOr the “contractible
contraction preserves P(R2n, ω0)” see McDuff Salamon.

Step 2. End(TM) is a smooth vector bundle over M , where the fiber over
each point x ∈M is End(TxM). There is the space

Jx(M,ω) ⊂ End(TxM)

by definition.
Define

J ′(M,ω) =
⋃
x∈M

Jx(M,ω) ⊂ End(TM).

There is the natural projection map

J ′(M,ω)→M.

Claim. This is a fiber bundle.
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Proof. Need to checl local triviality. Reason: Darboux’s Theorem.
Given x ∈ M , choose a neighborhood V of x such that there is a

symplectomorphism
ϕ : (V, ω)→ (U, ω0)

where U ⊂ R2n is some open domain. And we assume x is mapped to 0.
Then we have a commutative square:

π−1(V ) J0

V U

Step. 3 Need to show J(M,ω) is the space of smooth sections of J ′(M,ω),
which is a smooth fiber bundle with non-empty contractible fibers. Then it
follows that J(M,ω) is non-empty and contractible.

Exercise. Check for a trivial fiber bundle with contractible fibers.

Exercise. Prove it in general or see either Steenrod or Mathoverflow.

Recall we were studying

u : R× R /Z →M

such that
∂su+ Jt · (∂tU −XHt

◦ u) = 0

this is CRF equation. Here we are asuming (M,ω) is a copact sympelctic
manifold, Jt are compatilbe a.c.s., and Ht time-dependent Hamiltonians.

Define
ũ(s, T ) = (ϕTHt

)−1
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Solutions to u to CRF are equivalent to solutions

ũ : R× R /Z →M

to
∂sũ+ J̃t(∂tũ) = 0

for a suitalbe transformation

C∞(R× R/Z,M)→ C∞(R× R/Z,M)

u 7→ ũ

and of
Jt 7→ J̃t.

Define
ũ(s, t) = (ϕtHt

)−1 ◦ u(s, t)
and

J̃t = ((ϕtHt
)−1)∗Jt = (dϕtHt

)−1Jt(dϕ
t
Ht

).
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Note. Even if Jt is time-independent, this J̃t is time-dependent.

Proof of this equivalency is just a computation:

Proof.

∂su = ∂s(ϕHt)
t ◦ ũ) (4.14)

= dϕtHt
(∂sũ) (4.15)

∂tu = ∂t(ϕ
t
Ht
◦ ũ) (4.16)

= dϕtHt
(∂tũ) + (XHt

◦ ϕtHt
) ◦ ũ (4.17)

Thus

4.2 Pseudoholomorphic Curves
The cylinder R × R/Z is the quotient of C by vertical integer translation. So
the cylinder inherits the a.c.s. j from C:

j

(
∂

∂s

)
=

∂

∂t

this implies

j

(
∂

∂t

)
= − ∂

∂s
.

Suppose
u : R× R /Z → (M,J)

where J is a a.c.s. Then u obeys CR:

∂su+ J(∂tu) = 0

if and only if u intertwines the two a.c.s. (j, J), i.e.

u :
(
R× R /Z → (M,J), j

)
of almost complex manifolds.

A motphism etween almost complex manifolds

f : (M1, J1)→ (M2, J2)

is a smooth map obeying
J2 ◦ df = df ◦ J1

(f intertwines J1 and J2).
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Proof. Suppose u : R× R/Z→M .

du ◦ j
(
− ∂

∂s

)
= du

(
∂

∂t

)
= −∂su

J ◦ du
(
∂

∂t

)
= J(∂tu)

Hence
∂su+ J(∂tu) = 0

if and only if
du ◦ j = J ◦ du

If dimM1 > 2, then generically, there are no non-constant morphisms to
(C, j). If dimM1 = 2, then the situation is much different:

If (Σ, j) is a 2-dim almost complex manifold, then it is integrable, i.e. there
exists a complex structure on Σ whose affiliated a.c.s. is j (fundamental Thm.
about Riemann surfaces).

If (M,J) is any almost complex manifold, one expects lots of morphisms

(Σ, j)→ (M,J).

To wit: if x ∈M , and 0 ̸= vx ∈ TxM , then there exists a map

f : (Bε(0), j)→ (M,J)

where Bε(0) ⊂ C, and such that

f(0) = x, df((1, 0)0) = vx.

We call a morphism
(Σ, j)→ (M,J)

a pseudoholomorphic curve or J-holomorphic curve.
Regularity: If (M,J) is a smooth almost complex manifold, and

u : (C ⊃ U, j)→ (M,J)

is once-differentiable, and is furthermore J-holomorphic, then u is in fact smooth.
(something about elliptic regularity)

4.2.1 Area and Energy of J-holomorphic Curves
Warm-up: Suppose

u : (U, j)→ (M,J)

where U ⊂ C. To calculate area of u, we want to integrate

g(∂su, ∂tu)dsdt

over U , where g is the standard metric on Cn

CHAPTER 4. HAMILTONIAN FLOER HOMOLOGY 64



Lecture 23: 22 Mar

Lecture 23: 22 Mar

4.3 Area and Energy of Pseudoholomorphic Curves
Area: if v⃗1, . . . , v⃗k ∈ Rn, we are interested in the k-dim volume of the paral-
lelopiped they span is gotten by

()

Gram matrix, and then taking the square root of the determinant.
Suppose U ⊂ R2 with coordinates (s, t), and

f : U → (M, g)

where (M, g) is a Riemannian manifold. Then

Area(f) =

∫
U

det

(
g(∂sf, ∂sf) g(∂sf, ∂tf)
g(∂tf, ∂sf) g(∂tf, ∂tf)

)1/2

dsdt

This is a diffeomorphism invariant, i.e. if

ϕ : R2 ⊃ V → U

is a diffeo, then
Area(f ◦ ϕ) = Area(f).

Then if Σ is a smooth surface and

f : Σ→ (M, g)

is a smooth map, then we can define Area(f) using the above definition on local
coordinates.

Energy: We ahve f, U, (M, g) as before, (here |∂sf |2 is shorthand for g(∂sf, ∂sf))

energy(f) =
1

2

∫ (
|∂sf |2 + |∂tf |2

)
dsdt

Compare: if γ : [a, b]→ Rn, then

energy(γ) =
1

2

∫ b

a

|∂tγ|2dt

integral of 1
2 |∂tγ|

2 is the kinetic energy of a particle of mass 1.
This came up earlier: if γ : R→ (M, g) is a flow line of −∇gf for f a Morse

function, then
energy(γ) = f(p−)− f(p+)

where
p± = lim

t→±∞
γ(t).

Caution: energy is not a diffeomorphism invariant, but it is a conformal invari-
ant: treat R2 = C where (s, t) ∈ R2 corresponds to s+ it ∈ C. If we have

ϕ : C ⊃ V → U ⊂ C
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which is conformal, i.e. a bholomorhism ie.e a diffeomorphism satisfying

j ◦ dϕ = dϕ ◦ j.

then
energy(f ◦ ϕ) = energy(f).

If (Σ, j) is a Riemann surface, then we can define energy(f) by locally by our
energy formula, for any smooth map

f : (Σ, j)→ (M, g).

So now, let’s suppose (M,ω) is a symplectic manifold, we choose a compatible
a.c.s. J(M,ω), and g the affiliated metric, i.e. g(v, w) = ω(v, Jw) for all x ∈M ,
v, w ∈ TxM . If we have a map from a Riemann surface to M ,

f : (Σ, j)→ (M,ω)

obeying
df ◦ j = J ◦ df.

then we call f (j, J)-holomorphic, and Im(f) is called a J-holomorphic or a
pseudoholomorphic curve.

Proposition 16. Suppose

f : (Σ, j)→ (M,ω, J)

is a smooth map. Then

Area(f) ≥
∫
Σ

f∗ω

and
energy(f) ≥

∫
Σ

f∗ω.

Equality holds in the first one if and only if Im(f) is a pseudoholomorphic
curve; and equality holds in the second one if and only if f is J-holomoprhic
(which would imply Im(f) is a pseudoholomoprhic curve).

If Σ is closed, and we let A := f∗[Σ] ∈ H2(M), then the RHS is∫
Σ

f∗ω = [ω](A),

which is a topological invariant; whereas Area(f) is a geometric one, and
energy(f) is an analytic one.

Aside. non-constant connected psudoholomorphic curve ≡ immersed surface
whose tangent planes are all J-holomoprhic “lines” in (M,J). This requires a
theorem along the lines of analytic continuation. for J-holomorphic curves.

Slogan: Pseudoholomorphic curves minimize
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Corollary. A pair of psh curve representing A ∈ H2(M) have the same area;
and J-holomorphic parametrizations of them have the same energy, and
both area and energy are equal to [ω](A).

In an arbitrary (M,J) where J is not compatible with some symplectic form,
a one-parameter family of J-holomorphic curves (Σ, j) → (M,J) could badly
degenerate, have bits, “degenerate”. So no good deformation theory. But with
J compatible with some ω, the energy control we get will allow us to undestand
deformations, which is the idea of Gromov compactness.
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Want to prove the Proposition. Note that the quantity on the RHS of the
inequalities are independent of J .

Proof. We start with proving the second inequality

energy(f) ≥ [ω](A).

Recall, in a chart U of Σ, with complex coordinates s+ it. We have

energy(f

∣∣∣∣
U

) =
1

2

∫
U

(|∂sf |2g + |∂tf |
2
g)dsdt.

Note that J is an isometry of g; indeed, for all x ∈M and v, w ∈ TxM , we
have

g(Jv, Jw) = ω(Jv, J(Jw)) (4.18)
= ω(Jv,−w) (4.19)
= ω(w, Jv) (4.20)
= g(w, v) (4.21)
= g(v, w). (4.22)

Thus,

|∂sf |2 + |∂t|2 = |sf |2 + |J∂tf |2 (4.23)

= |∂sf + J∂tf |2 − 2g(∂sf, J∂tf) (4.24)

= |∂df + J∂tf |2 − 2ω(∂sf, J(J∂tf)) (4.25)

= |∂sf + J∂tf |2 + 2ω(∂sf, ∂tf) (4.26)

The left term is ≥ 0, and equality iff. CR satisfied.
Thus,

energy(f

∣∣∣∣
U

) ≥ (4.27)
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Preview of Gromov compactness Suppose

un : (Σ, j)→M

are all J-holomorphic and
energy(un) ≤ E0

i.e. bounded energy. Important case: if un are J-holomorphic and they all
represent the same homology class:

un[Σ] = A ∈ H2.

Then one possibility is: for all (s, t) (in a holomorpphic chasrt),

|∂sun(s, t)|2 + |∂tun(s, t)|2

stays bounded, i.e. there exists a uniform bound on all pointwise energies.
Then Arzela-Ascoli implies that there exsits a subsequence un which converges
uniformly in C1 to a (once differentiable) map u : Σ → M , and u will be J-
holomorphic.
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Set-up: (M,ω) is a closed symplectic manifold.

Let Σ denote a closed, smooth surface (no a.c.s. on Σ yet). Let Γ be a set of
pairwise disjoint simple closed curves on Σ. Let Σ0 be the surface obtained by
the one-point compactification of each end of Σ − Γ (the end-compactification
points pair up into nodal pairs).

Let Σ be the space obtained by collapsing each loop in Γ ⊂ Σ to a point,
this is equivalent to indetigying points in the same nodal pair (nodes are as
individual–??)

We have quotient maps
q : Σ→ Σ

q0 : Σ0 → Σ

By definition, an a.c.s. J on Σ is an a.c.s. on Σ0.
A parametrized cusp curve is a map

u : (Σ, J)→ (M,J)

such that
u ◦ q0 : (Σ0, J)→ (M,J)

is (j, J)-holomorphic away from the nodal pairs, and such that q◦u is continuous.
Now suppose that j is an a.c.s. on Σ and a sequence

un : (Σ, j)→ (M,J)

that are all J-holomorphic.

Definition 16. We say un weakly converges to u if there exist diffeomor-
phisms ϕn of Σ such that

1. un ◦ ϕn converges C0 (uniformly and continuously) to u ◦ q

2. un ◦ phin converges in C∞
loc to u ◦ q on Σ− Γ
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3. (ϕn)∗j converges in C∞
loc to J on Σ− Γ = Σ0 \ nodal pairs

Recall C∞
loc-convergence means for all compact subsetK ⊂ Σ−Γ, un ◦ ϕn

∣∣
K

converges in C∞ to u ◦ q on K.

Theorem 12 (Basic form of Gromov compactness). If un : (Σ, j) → (M,J)
is a sequence of J-holomorphic maps with bounded energy:

evergy(u) = Area(un) = [ω](un)∗[Σ] ≤ E0 <∞

then there exists a subsequence of un which weakly converges to a cusp
curve.

Link this with the example

ur : [x : y] 7→ [x2 : y2 : rxy]

from last class.
Addendum: A J-holomoprhic map u : (Σ, j) → (M,J) is called multiply-

covered if there exists a branched covering map

π : (Σ, j)→ (Σ′, j′)

of degree > 1 and a
v : (Σ′, j′)→ (M,J)

such that
u = v ◦ π.

Baby example:
u0 : CP 1 → CP 2

is multiply-covered since
π : CP 1 → CP 1

with
π([x : y]) = [x2 : y2]

and
v : CP 1 → CP 2

v([x : y]) = [x : y : 0]

gives
u0 = π ◦ v.

If u is not multiply-covered, then it is simple. All cylinders in Floer homology
are simple.

Simple test: u is simple if and only if it is somewhere-injective, which means
there exists z0 ∈ Σ such that u(z) = u(z0) if and only if z = z0, and duz0 ̸= 0.
If u is simple and Σ is conneted, then the set of somewhere injective points is
open and dense in the domain.

The conclusion ofthe Addendum: if un are all simple, then so is the weak
Gromov limit u, unless Σ is itself a Riemann surface.

Suppose (M,ω) is a closed symplectic manifold, J ∈ J(M,ω) a compatible
a.c.s.
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The tangent bundle, equipped with J (TM, J) is a complex vector bundle
over M , which gives rise to

c1(TM, J) ∈ H2(M)

J(M,ω) is contractible, so any two choices J, J ′ ∈ J(M,ω) give rise to homo-
topic complex vector bundles (TM, J), (TM, J ′), thus

c1(TM, J) = c1(TM, J ′)

thus we can unambiguouslky define

c1(M,ω) := c1(TM, J)

for any J ∈ J(M,ω). (McDuff-Salomon)
Select A ∈ H2(M). Fix a Riemann surface (Σ, j)
Define

M(A, J) := {J-hol maps u : (Σ, j)→ (M,J) | u∗[Σ] = A, u simple}

For instance, if (M,ω, J) = (CP 2, ωstd, Jstd), (Σ, j) = (CP 1, j), and

A = 2H[CP 1] ∈ H2(CP 2)

then
ur ∈M(A, J)

fro all 0 < r <∞.

Theorem 13 (Gromov). For a generic choice of J ∈ J(M,ω),M(A, J) is a
smooth manifold of dimension

dimM(A, J) =
1

2
(dimM) · χ(Σ) + 2c1(M,ω) ·A

So in our example,
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Today: consequences of Gromov compactness. (See Gromov’s paper on pseu-
doholomorphic curves)

As usual, (M,ω) a closed symplectic manifold, J(M,ω) the space of com-
patible a.c.s. on (M,ω).

Gromov compactness states: if un : (Σ, j) → (M,J), J ∈ J(M,ω) is a
sequence of parametrized psudoholomorphic curves, and there is an absolute
bound on the energies:

E(un) ≤ E0 <∞

then there exists a subsequence which weakly converges to a parametrized cus-
pidal curve.

pic
Special case: if all of these maps represent a fixed homology class:

(un)∗[Σ] = A,
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A ∈ H2(M) independent of n, then

E(un) = ω(A) ∀n

and the cuspidal curve u has

E(u) = ω(A),

and
u∗[Σ] = A.

And
u∗[Σ] =

∑
Σj component of Σ

u∗[Σj ]

similarly
E(u) =

∑
u(Σj)

Genericity/dimension theorem

M(A, J) := u {u : (Σ, j)→ (M,J) | u J-holomorphic, u∗[Σ] = A, u simple}

For generic J , this space M(A, J) is a smooth manifold of dimension

1

2
(dim(M)) · χ(Σ) + 2c1(A)

here c1(M,ω) := c1(M,J).

Remark. Genericity: transversality in symplectic geomoetry, involving ∂
operator, elliptic regularity. Fredholm theory, Sard-Smale regularity for
Banach manifolds.

The dimension formula comes from Riemann-Roch Theorem.
(See McDuff-Salamon: J-holomorphic curves and Quantum Cohomol-

ogy)

Suppose
inf{ω(B) > 0 | B ∈ H2(M)} > 0

PAUSE

Example. (M,ω) = (CP 2, ωFS), and take (Σ, j) = (CP 1, Jstd), and A =
[CP 1] ∈ H2(CP 2).
M(A, J) (for generic J) is a smooth manifold of dimension 1

2 ·4·2+2·3 =
10.

Take J to be the standard J on CP 2, this is saying the space of
parametrized lines inside CP 2 is of dimension 10. Let’s check this:

Any pair of points in CP 2 determines a unique CP 1: this seems to give
4+4 dimensions ofdistinct pairs of points in CP 2; but we need to substract
the points that give us the same CP 1. We subtract (2 + 2) dimensions of
points on CP 1. So we get a 4-dimensional space of unparametrized CP 1’s
inside CP 2.

There is a 6-dimensional family of parametrizitons of each CP 1, because
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the space of automorphisms,

Aut(CP 1, jstd)

is 6-dimensional (this is the space of Mobius transformations i.e. PSL(2,C)
So we have

10 = 4 + 6

In fact, any J ∈ J(CP 2, ωFS) is regular, in the sense that M(A, J) is
a smooth manifold of the correct dimension. So we get a four-dimensional
family of unparametrized J-holomoprhic CP 1’s in CP 2 for any J ∈ J(CP 2, ωFS)

Addendum to Gromov compactness: G = Aut(Σ, j) acts on M(A, J) by
precomposition. Note: Aut(CP 1, jstd) is six-dimensional,

pic

Theorem 14. For generic J ,

M(A, J) /G

admits a compactification by the space of cusp curves representing (A, J).
And M(A, J)/G is a compact manifold of dimsneion 1

2 dimM · χ(Σ) +
2c1(A)− dimG (**).

PLAY
Suppose

inf{ω(B) > 0 | B ∈ H2(M)} > 0

this happens for instance:

1. (M,ω) = (CP 2, ωFS)

2. (M,ω) = (S2 × S2, ωFS ⊕ ωFS)

3. Non-example: (M,ω) = (S2 × S2, ωFSλωFS) where λ /∈ Z. Here the
infimum is 0.

Assume this happens, pick a class A ∈ H2(M) such that ω(A) > 0 Then any
cusp curve which represents A has just one component. Morever, it cannot be
multiply-covered. Hence it is an honest simple J-holomoprhic curve that repre-
sents A. Therefore,M(A, J)/G is a closed manifold of the expected dimension
(**).

Let us focus on the case (CP 2, ωFS). For any j ∈ J(CP 2, ωFS),M(A, j)/G
is a compact four-dim space. Moreover, for any pair of distinct points in CP 2,
there exists a unique J-holomorphic curve passing through them. For any fixed
point p ∈ CP 2, the space of J-holomorphic genus-zero curves passing through
p give a singular foliation of CP 2.

Now to the case of (M,ω) = (S2 × S2, ωFSωFS). Take

A = [S2 × ⋆]

and
B = [⋆× S2].
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As it turns out, for any J ∈ J(M,ω) you choose, the set of J-hol genus-0 curves
representing A foliate S2 × S2, as fo the J-hol genus-0 curves representing B
and any A curve intersects any B-curve in a unique point.

Thisfeeds into Gromov’s R4 receginition theorem:
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From pseudoholomorphic curves to Floer homology.

Set-up for Floer homology: (M,ω) a closed symplectic manifold,

H = Ht ∈ C∞(M × R/Z)

1-periodic time-dependent Hamiltonian.
We also assume π2(M) = 0. And assume all fixed points of ϕ1Ht

are non-
degen.

THen CF is a chain complex freely generated over F2 by contractible periodic
orbits of Hamiltonian flow:

γ : R/Z→M

• contractible, i.e. γ ∈ L(M)

• dγ
dt = XHt ◦ γ

We saw that such γ ∈ L(M) are critical points of the symplectic action
funtional

A = AH = AHt

where

A(γ) =
∫ 1

0

Ht ◦ γ(t)dt+
∫
D2

γ̂∗ω.

We study the gradient flow of A, after first choosing a compatible J ∈
J(M,ω); or, with no added complication, Jt ∈ J(M,ω), 0 ≤ t ≤ 1, smooth in t,
time-dependent, i.e. we can write

Jt ∈ C∞([0, 1], J(M,ω))

such that
u : R→ L(M)

du

ds
+∇JtAHt

◦ u = 0

we unraveled this equation into the form

u : (s, t) ∋ R× (R/Z)→M

∂su+ Jt(∂tu−XHt
◦ u) = 0

the Cauchy-Riemann-Fleor equation.
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Reparamization trick: Define

ũ(s, t) = (ϕtH)−1 ◦ u(s, t)

J̃t = dϕtH
−1Jt(dϕ

t
H), 0 ≤ t ≤ 1

then CRF holds iff
∂sũ+ J̃t(∂tũ) = 0.

TFAE: given u solving CRF,

1. lim
s→±∞

u(s, t) = γ±(t) contractivle closed Hamiltonian orbits, convergence
unitform in t as s→ +∞ or s→ −∞.

2. lim
s→±∞

ũ(s, t) = X± ∈ Fix(ϕ1H) converge uniform in t

3.
E(ũ) =

1

2

∫
R×(R/Z)

(|∂sũ|2 + |∂tu|2)dsdt <∞

where
|·| = gt(·, ·) = ω(·, J̃t·)

4.
E(u) =

1

2R×(R/Z)
(|∂su|2t + |∂tu−XHt

◦ u|2t )dsdt <∞

where
|·|t = gt(·, ·) = ω(, Jt)

Exercise.
E(u) = A(γ−)−A(γ+)

Following the exercise, fix γ± ∈ Orb(Ht) and define

M(γ−, γ+, Jt, Ht)

{
u solving CRF s.t. lim

s→±∞
u(s, t) = γ±(t) conv unif in t

}

Remark. Every u ∈M(γ−, γ+, Jt, Ht) has

E(u) = A(γ−)−A(γ+).

Floer proved a relative version of Gromov’s compactness theorem for solu-
tions to CRF. Specifically, if un is a sequence of solutions to CRF, and moreover
the energies remain bounded: E(u) ≤ E0 < ∞ for all n, then un has a subse-
quence which weakly converges to a “cusp cylinder”. We recycle notation such
that un denotes the subsequence. Heuristically,
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