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Abstract. We prove that Khovanov homology, together with knot Floer ho-

mology, both with coefficients in Z/2Z, detects the (2, 7) torus knot, assum-
ing the knot in question has symmetric monodromy. Our proof follows the

techniques used in [BHS25], in which the result is proved for the (2, 5) torus

knot, while only assuming the knots have identical Khovanov homology. The
technique involves combining tools from knot homology theories with classical

results on the dynamics of surface homeomorphisms, culminating in reducing
the detection question to a problem about mutually braided unknots. As in the

aforementioned paper, we employ computer assistance to solve this problem,

though our computational requirements are substantially more intensive.

1.

1. Introduction

We prove that Khovanov homology, together with knot Floer homology detects
the torus knot T (2, 7), assuming the fibering monodromy of the knot is symmetric,
i.e. commutes with a hyperelliptic involution. The following is our main result:

Theorem 1.1. Suppose K ⊂ S3 is a knot whose reduced Khovanov homology over
Z/2Z is 7-dimensional and is supported in a single positive δ-grading, and suppose

ĤFK(K) ∼= ĤFK(T (2, 7))

as graded vector spaces over Z/2Z. Suppose in addition that there exists a hyperel-
liptic involution τ such that the fibering monodromy of K commutes with τ . Then
K = T (2, 7).

1.1. Outline.

1.2. Acknowledgments.

2. Pseudo-Anosov Maps

In this section, we provide a very brief review of some basic facts and terminology
related to pseudo-Anosov homeomorphisms of surfaces.

Suppose

h : Σ → Σ
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is a homeomorphism of a compact, orientable surface Σ with (possibly empty)
boundary boundary and/or with marked points. The Nielsen–Thurston classifica-
tion ([Thu88]) states that h is freely isotopic (i.e. not required to be the identity
on ∂Σ) to a homeomorphism ϕh which is either:

• periodic, meaning that ϕnh = id for some positive integer n;
• reducible, meaning that there is a non-empty set c = c1, . . . , cn of disjoint,
essential, simple closed curves in Σ such that {ϕh(ci)}ni=1 = c; or

• pseudo-Anosov

We call ϕh a geometric representative of h. We will focus on the case in which ϕ
is pseudo-Anosov. In this case it is known that it is neither periodic nor reducible.

The map ϕ is pseudo-Anosov if there exists a constant λ > 1 and a pair of
transverse, measured, singular foliations (Fu, µu) and (Fs, µs) (collectively termed
invariant foliations) such that:

• ϕ(Fu, µu) = (Fu, λµu
)

• ϕ(Fs, µs) = (Fs, λ
−1
µs

)

and such that the singularity types are subject to the following constraints: non-
marked interior singular points have at least 3 prongs, and boundary components
consist of some number k ≥ 1 of 1-pronged singularities, which we often think of
collectively as a “k-pronged boundary”.

The number λ is called the dilatation of the pseudo-Anosov ψ, and is a topic of
interest in its own right.

Suppose Σ has exactly one boundary component. If Fs and Fu meet ∂Σ in n ≥ 2
prongs, then ϕ extends naturally to a pseudo-Anosov homeomorphism

ϕ̂ : Σ̂ → Σ̂

of the closed surface Σ̂ obtained from Σ by capping off the boundary with a disk.
Moreover, the invariant foliations of ϕ extend to stable and unstable foliations

F̂s and F̂u for ϕ̂ in which the n-prongs on ∂Σ extend to n-prongs meeting at a
singularity p in the capping disk (except that p is a smooth point when n = 2).

Note that p is a fixed point of ϕ̂.
Suppose still that Σ has a single boundary component. One dynamical aspect

of ϕ which will be important is the fractional Dehn twist coefficient c(h). Roughly,
c(h) measures how the geometric representative ϕ behaves near ∂Σ. When ϕ is
pseudo-Anosov, we use the definition c(h) := n+m/k, where h acts as n full twists
near ∂Σ; the invariant foliations of ϕ have k singular points on ∂Σ; and ϕ acts as
a m/k rotation on the cyclically-ordered set of singular points on ∂Σ. Note that
when the invariant foliations of ϕ have a single prong on ∂Σ, we have c(h) ∈ Z,
since there is no “fractional part.” Conversely, if c(h) ∈ Z then we can conclude
that ϕ does not rotate the boundary singularity.

A hyperelliptic involution is an order-two element of Mod(Σg) that acts by −I
on H1(Σg;Z). It is well-known that for g = 2, there is a unique hyperelliptic
involution. Furthermore, every homeomorphism of the closed genus-two surface
is isotopic to some homeomoprhism that commutes with this unique hyperelliptic
involution. For g ≥ 3, this uniqueness fails, and commutativity can fail as well.
We will mostly restrict our attention to pseudo-Anosov homeomorphisms ϕ on the
genus three surface which are isotopic to some map that commutes with some
hyperelliptic involution on the closed genus three surface. We will call such maps
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symmetric. In general, we will also extend this terminology to maps on a surface
with possibly non-empty boundary.

3. Floer homology and fixed points

The purpose of this section is to present some information that will be needed
to prove

It is well-known from the work of Ozvath and Szabo [OS04] that knot Floer
homology detects fiberedness and the genus of the knot, and that this information
is contained in the top Alexander grading. The work of Ni and Yi [Ni22] shows
that for a fibered knot, the second-to-top Alexander grading contains information
regarding the number of fixed points of the fibering monodromy:

Theorem 3.1 ([Ni22] Theorem 1.2). Let Y be a closed, oriented 3–manifold, and
K ⊂ Y be a fibered knot with fiber F and monodromy φ. If

rankĤFK(Y,K, [F ], g(F )− 1;F) = r

then φ is freely isotopic to a diffeomorphism with at most r − 1 fixed points.

Particular to our case, this implies that a knot K with the same knot Fleor
homology as that of T (2, 7) necessarily must have no fixed points.

The following Lemma establishes that if there were a knot K with identical
Alexander polynomial to that of T (2, n) (in particular this would be the case if the
knot Floer homologies were identical), and if one assumes K ̸= T (2, n), then K
must be hyperbolic. The argument follows almost identically to that of Lemma 3.2
of [BHS25], where the analogous fact is proved specifically for T (2, 5).

Lemma 3.2. Let K ⊂ S3 be a fibered knot with Alexander polynomial identical to
that of the torus knot T (2, n), that is:

∆K(t) = ∆T (2,n)(t) = tn−1 − tn−2 + tn−3 − · · ·++t2 − t+ 1

Then either K = T (2, n) or K is hyperbolic.

Proof. Since K is fibered, the Alexander polynomial tells us that K has genus

g(K) = g(T (2, n)) =
n− 1

2

We know that K is either a torus knot, a satellite knot, or hyperbolic ([Thu88]).
The only genus-n−1

2 torus knots are T (2,±n). Thus it suffices to prove that K is
not a satellite. Suppose for a contradiction that K = P (C) is a nontrivial satellite
knot. By “nontrivial,” we mean that the pattern P ⊂ S1 × D2 is not isotopic to
the core S1 × 0, and the companion C ⊂ S3 is not the unknot. Since K is fibered,
the pattern P has winding number w ≥ 1, and both C and the satellite P (U)
are fibered [BZ03, Corollary 4.15, Proposition 5.5]. The Alexander polynomials of
these knots are related by

∆K(t) = ∆P (U)(t) ·∆C(t
w),

and ∆C(t
w) is a nontrivial polynomial with degree w · g(C) ≥ 1. Since ∆K(t) is

irreducible, we must then have ∆P (U)(t) = 1. But since P (U) is also fibered, this
can only happen if it has genus zero, meaning that P (U) is the unknot. We now
have ∆K(t) = ∆C(t

w), which then forces w = 1. Since P has winding number
one and P (U) is the unknot, a result of Hirasawa, Murasugi, and Silver [HMS08,
Corollary 1] says that K = P (C) can only be fibered if P is isotopic to the core
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S1×{0} ⊂ S1×D2. But this is a contradiction, so K must not be a satellite after
all. □

The following result due to Hedden will be needed for the quasipositivity of K:

Theorem 3.3 ([Hed10] Theorem 1.2). Let K be a fibered knot in S3. Then τ(K) =
g4(K) = g(K) if and only if K is strongly quasipositive.

Since
τ(K) = g4(K) = g(K) = 3,

K must be strongly quasipositive.

Lemma 3.4 ([BHS25] Lemma 3.3). Let K ⊂ S3 be a hyperbolic, fibered, strongly
quasipositive knot with associated open book (S, h). Then h is freely isotopic to a
pseudo-Anosov homeomorphism

ψ : S → S

whose stable foliation has n ≥ 2 prongs on ∂S, and h has fractional Dehn twist
coefficient c(h) = 1/n.

Lemma 3.5. Let ϕ : Σ → Σ be a pseudo-Anosov map of a closed genus-3 surface
Σ. Suppose ψ is symmetric. Then there exists a branched double covering

π : Σ → S2,

branched along eight points q1, ..., q8 ∈ S2, such that ϕ is a lift of a pseudo-Anosov
map

b : (S2, q1, ..., q8) → (S2, q1, ..., q6)

of the marked sphere, and the invariant foliations of ϕ are lifts of those of b.

Proof. By assumption, ϕ is isotopic to a map ϕ0 such that

ϕ0τ = τϕ0

where τ is the hyperelliptic involution. Let π be the quotient map under the action
of this map. Then

π : Σ → S2

is a branched double covering, branched along eight points q1, ..., q8 ∈ S2. Let
p1, . . . , p8 be the preimages of these branch points,

pi := π−1(qi).

This commutativity implies that ϕ0 is in fact a map

ϕ0 : (Σ, p1, . . . , p8) → (Σ, p1, ..., p8)

of the marked genus-2 surface, and is a lift of a map

b0 : (S2, q1, ..., q8) → (S2, q1, ..., q8)

□

Theorem 3.6. Let K ̸= T (2, 7) be a knot in S3 such that

ĤFK(K) ∼= ĤFK(T (2, 7)

as bigraded vector spaces, and suppose the fibering monodromy of K is symmetric.

Then there exists a pseudo-Anosov 7-braid β whose closure B = β̂ is an unknot with
braid axis A, such that K is the lift of A in the branched double cover Σ(S3, B) ∼= S3.
In particular, K is a doubly-periodic knot with unknotted quotient A and axis B.
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Proof. Suppose K satisfies the hypotheses of the theorem. Then, by Theorem 3.3,
K is a genus-2, fibered, strongly quasipositive knot. By Lemma 3.2,K is hyperbolic.
By Lemma 3.4, h is then freely isotopic to a pseudo-Anosov map ψ whose invariant
foliations have n ≥ 2 prongs on ∂S. Since the invariant foliations of ψ have more
than one boundary prong, ψ extends to a pseudo-Anosov homeomorphism

ψ̂ : Ŝ → Ŝ

of the closed genus-2 surface Ŝ obtained from S by capping off its boundary with a
disk, as discussed in §2. The invariant foliations for ψ extend to invariant foliations

for ψ̂ in which the n boundary prongs extend to an n-pronged singularity (or smooth

point if n = 2) p in the disk, which is fixed by p̂si. It follows from Theorem 3.1

that p is the only fixed point of p̂si. By Lemma 3.5, there exists a branched double
covering

π : Ŝ → S2

of the sphere along eight points q1, ..., q8 such that ψ̂ is the lift of a pseudo-Anosov
map

b : (S2, q1, ..., q8) → (S2, q1, ..., q6)

of the marked sphere. Let

τ : Ŝ → Ŝ

be the associated covering involution, and note that by assumption τ ◦ ˆ[ψ] = ψ̂ ◦ τ .
Moreover, the fixed points of τ are precisely the preimages p1, ..., p8, where

pi := π−1(qi)

We claim that the fixed point p of ψ̂ is one of these pi; that is,

(3.1) τ(p) = p

To see this, we note that

ψ̂(τ(p)) = τ(ψ̂(p)) = τ(p).

That is, τ(p) is also a fixed point of ψ̂. Since ψ has only one fixed point, 3.1 follows.
Without loss of generality, let us suppose p = p8. Then π restricts to a branched

double covering of punctured surfaces

π′ = Ŝ \ {p6} → S2 \ {q8}
We will view these punctured surfaces as the interiors of S and D2. Let us then
extend π′ to a branched double covering between compact surfaces,

π′ : S → S2,

branched along the seven marked points q1, ..., q7. The extension of

ψ̂|Ŝ\{p8}
∼= int(S)

to S is freely isotopic to h. It follows that h is isotopic to the lift under π′ of a
homeomorphism

β : (D2, q1, . . . , q7) → (D2, q1, . . . , q7)

of the marked disk which is the identity on ∂D2, where β is freely isotopic to the
extension of

b|S2\{q7}
∼= int(D2)

to D2. In what follows, we will think of β as a homeomorphism of this marked disk
and as a 7-braid, interchangeably.
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This map specifies an open book decomposition (D2, β) of S3 with unknotted
binding A.

In this open book decomposition, the points q1, ..., q7 sweep out the closure

B = β̂ ⊂ S3

of the 7-braid β, with axis A.
The covering map π′ extends to a branched double covering from the open

book decomposition specified by (S, h) to the open book decomposition specified
by (D2, β), in which the branch set is the braid closure B. Precisely, this extension
is defined by

(3.2) π′ × id : Mh →Mβ ,

where Mh
∼= S3 is the manifold associated to the open book (S, h), given by

Mh : (S × [0, 1])/ ∼,

where ∼ is the relation defined by

(x, 0) ∼ (h(x), 1) for x ∈ S

(x, t) ∼ (x, s) for x ∈ ∂S and s, t ∈ [0, 1]

and likewise for Mβ
∼= S3. Since Mh

∼= Σ(S3, B) ∼= S3, it follows that B is an
unknot [Wal69]. Finally, the binding

K = (∂S × {0})/ ∼

of (S, h) is the lift of the binding

A = (∂D2 × {0})/ ∼

of (D2, β) (and braid axis of β) under the branched double covering (3.2). □

4. Exchangeable braids and computations

Theorem 4.1. Let β be a pseudo-Anosov 7-braid with unknotted closure. Let K

be the lift of the braid axis in the branched double cover Σ(S3, β̂) ∼= S3. If K is
strongly quasipositive with Alexander polynomial

∆(t) = t3 − t2 + t− 1 + t−1 − t−2 + t−3

then β is either not exchangeable or one of the following two braids:

Lemma 4.2 ([BHS25] Lemma 4.2). Let β be an exchangeable n-braid for some odd

n. Suppose that the lift of the braid axis in the branched double cover Σ(S3, β̂) ∼= S3

is strongly quasipositive. Then β is conjugate to a braid of the form

β′ = σi1j1 · σi2j2 · · · · · σin−1jn−1
,

where

σij = (σj−1σj−2 · · ·σi+1) · σi · (σj−1σj−2 · · ·σi+1)− 1

for 1 ≤ i < j ≤ n.

Lemma 4.3 ([BHS25] Lemma 4.3). If β is an exchangeable n-braid, then the closure
of βk is a fibered link for all integers k ≥ 1.
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proof of Theorem 4.1. We apply Lemma 4.2 in the case n = 7. There are twenty-
one generators σij with 1 ≤ i < j ≤ 7. Up to conjugacy, β is a product of six
such generators, according to Lemma 4.2, so there are 85,766,121 braids to check.
We examine each of these 85,766,121 braids using Sage [Sag21]. We then can use
a built-in functionality of Sage to determine whether any one of these braids are
pseudo-Anosov.

Following [BHS25] again, SinceK is the lift of the braid axis in the branched dou-

ble cover Σ(S3, β̂), its Alexander polynomial ∆K(t) is the characteristic polynomial
of the reduced Burau representation at t = −1, which has the form

ρ : B5 → GL4(Z[t, t−1])
t→−1−−−−→ GL4(Z)

Thus, we can check for the braids β for which for which

∆K(t) = t3 − t2 + t− 1 + t−1 − t−2 + t−3

by computing for its Burau matrix evaluated at t = −1, and see if the charac-
teristic polynomial of this matrix matches this desired one.

Among the 85,766,121 Stallings 7-braids, we found 248,305 braids that satisfy
these conditions. Many of these are in fact conjugate to one another, so we then
check for duplicate conjugacy classes and only keep one from each class. We found
that there are only 24 distinct conjugacy classes of braids among these.

We now apply Lemma 4.3 to these 24 braids, by taking powers of them, comput-
ing their Alexander polynomials for the leading coefficient. If the leading coefficient
of the Alexander polynomial of a braid power βk is 1, then we know βk is fibered,
thus by Lemma 4.3 β is an exchangeable 7-braid.

We found that all but two braids from the 24, a power of k ≤ 4 is sufficient to
make βk fibered. The two exceptional braids are:

β1 =σ1σ2σ1σ
−1
2 σ3σ2σ1σ

−1
2 σ−1

3 σ4σ3σ2σ1σ
−1
2 σ−1

3 σ−1
4 σ5

σ4σ3σ2σ
−1
3 σ−1

4 σ−1
5 σ6σ5σ4σ3σ

−1
4 σ−1

5 σ−1
6

and

β2 =σ3σ2σ1σ
−1
2 σ−1

3 σ4σ3σ2σ
−1
3 σ−1

4 σ5σ4σ3σ
−1
4 σ−1

5

σ4σ3σ2σ1σ
−1
2 σ−1

3 σ−1
4 σ5σ4σ3σ2σ

−1
3 σ−1

4 σ−1
5 σ6σ5σ4σ3σ

−1
4 σ−1

5 σ−1
6

For these two braids, we wrote a script to continuously check for fiberedness
of βk

i , and after letting it run for more than 48 hours and checking up to around
k = 10000+, we terminated the search.

□

5. The proof of Theorem 1.1

proof of Theorem 1.1. Let us assume for a contradiction that K ̸= T (2, 7). Then
Theorem ?? implies that there exists a pseudo-Anosov 7-braid β with unknotted
closure B, such that K is the lift of the braid axis A in the branched double cover
Σ(S3, B) ∼= S3. In particular, K is a doubly-periodic knot with unknotted quotient
A and axis B. Below, we prove that A is also braided with respect to B. □
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6. Future Works

Appendix A. Computational Details and Code

The following function in Sage outputs all 7-braids σij as described in Lemma
4.2, i.e. all elementary generators of Stallings 7-braids with exponent:

1 def elembraids(n=7,positive=True):

2 ## Return a tuple of the elementary braids on n strands.

3 BG = BraidGroup(n)

4 eblist = []

5 for i in range(1,n):

6 for j in range(i+1,n+1):

7 conjugator = BG( list(range(j-1,i,-1)) )

8 s = conjugator * BG([i]) * conjugator **(-1) ## exchange

strands i,j

9 if positive:

10 eblist.append(s) ## positive generators only

11 else:

12 eblist += [s, s**(-1)]

13 return tuple(eblist)

Listing 1. A function in Sage that outputs all generators of
Stallings 7-braids

The following function takes all of the generators that elembraids outputs, gen-
erates all of the Stallings 7-braids β′ (with exponent 1). It then goes through these
braids and only keeps the ones whose closure is the unknot, is pseudo-Anosov, and
that for which the characteristic polynomial of the Burau matrix at t = −1 is
t3 − t2 + t− 1 + t−1 − t−2 + t−3.

1 def stallings(n=7,positive=True ,verbose=False):

2 eblist = elembraids(n,positive)

3 answers = []

4 itercount = 0

5 for braidtuple in cartesian_product_iterator( [eblist ]*(n-1)

):

6 itercount += 1

7 b = prod(braidtuple)

8 if b.components_in_closure () == 1: ## it’s a knot , so it’s

an unknot

9 A = b.burau_matrix(reduced=True)

10 ## chech Alexander poly same as T(2,7) and also braid is

pseudoanosov

11 if bool(A.subs(t=-1).characteristic_polynomial () == x^6 -

x^5 + x^4 - x^3 + x^2 - x + 1) == True and b.

is_pseudoanosov () == True:

12 answers.append(b)

13 if verbose and itercount %1000 == 0:

14 print("%d braids checked out of %d, %d successful"%(

itercount ,len(eblist)**(n-1),len(answers)))

15 print("--- %s seconds ---" % (time.time() - start_time))

16

17 return answers
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Listing 2. A function in Sage that outputs all candidate Stallings
7-braids β

The function stallings found 248,305 candidate Stallings 7-braids. Now we will
use the following function to further reduce this number:

1 def check_stallings_braids(verbose=True):

2

3

4 print("Generating the Stallings 7-braids with correct

Alexander polynomial and are pseudoanosov ...")

5 sb_list_all = stallings (7,True ,verbose)

6 print("%d candidate braids found"%(len(sb_list_all)))

7 print("--- %s seconds ---" % (time.time() - start_time))

8

9

10 # Take one braid representative of each conjugacy class

11 sb_list = [BraidGroup (7)([6,5,4,3,2,1])] # start with a braid

giving T(2,7)

12 itercount = 1

13 for b in sb_list_all:

14 itercount += 1

15 if not True in [b.is_conjugated(beta) for beta in sb_list ]:

16 sb_list.append(b)

17 print("%d candidate braids checked out of %d, %d added to

distinct conjugacy classes"%(itercount ,len(sb_list_all)

,len(sb_list)))

18 print("%d distinct conjugacy classes found , including %s"%(

len(sb_list),str(sb_list [0])))

19 print("--- %s seconds ---" % (time.time() - start_time))

20

21 print("Checking that 4th powers of braids are not fibered ..."

)

22 still_successful = True

23 for sb in sb_list [1:]: # check all the classes that don’t

lift to T(2,7) because the 0th index is T(2,7)

24 ap = (sb**4).alexander_polynomial ()

25 if abs(ap.coefficients ()[0]) == 1:

26 print("*** braid might be exchangeable:")

27 print("*** b=%s"%str(sb.Tietze ()))

28 still_successful = False

29

30 if still_successful == False:

31 print("--- %s seconds ---" % (time.time() - start_time))

32 return False

33 else:

34 print("All exchangeable braid axes lifted to T(2,7).")

35 print("--- %s seconds ---" % (time.time() - start_time))

36 return True

37

38 print(check_stallings_braids ())
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