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Chapter 1

Manifolds

W
e are interested in studying spaces that are “locally modelled on Rn", on which
one can do calculus. For instance, we may have a function f from such a space
to R, and we may ask the rate of change of such a function at a point in some

particular direction.

§1.1 Basic constructions

Definition 1.1.1: Topological manifold

A topological n-manifold is a Hausdorff, second-countable topological space that
is locally Euclidean, i.e. for each point p ∈ M , there exists a neighborhood of p
homeomorphic to an open subset of R.

Recall that Hausdorff means that for every pair of points p, q ∈ M there is a pair
of disjoint neighborhoods U and V of p and q respectively. Second-countable means
that there exists a countable basis B. That is, B is a countable collection of open sets
B = {Ui} such that every open set U ⊂M is the union of some of the Ui’s.

Example 1.1.2

Trivially, Rn is itself a manifold. It is clearly Hausdorff; and it can be seen to be
second-countable by taking the countable basis to be the balls centered at Qn with
rational radii.

2



CHAPTER 1. MANIFOLDS 3

Both the Hausdorff and the second-countable conditions are preserved under taking
subsets; while the locally Euclidean condition is preserved under taking open subsets.
Thus open subsets of manifolds are manifolds. In particular open subsets of Rn are
manifolds.

There are lots of examples of manifolds in nature that arise as subsets of Rn cut out
by some equations.

Example 1.1.3: Locally Euclid. sp. but not Hausdorff and/or 2nd-count.

from homework.

Theorem 1.1.4: Classification of 1-manifolds

Any connected 1-manifold is homeomorphic to either R or a circle.

Proof. Omitted. See the work of Gale in the Dropbox. �

Remark 1.1.5: Equivalent definition, topological manifold

In the definition of a topological manifold, one can equivalently require every point
p ∈M to have a neighborhood homeomorphic to Rn, or homeomorphic to an open
ball in Rn. Indeed, if p has a neighborhood U with U ∼= Û ⊂ R (via f), then take
a ball B ⊂ Û containing f(p). Thus f−1(B) is a neighborhood of p homeomorphic
to a ball in Rn and hence also homeomorphic to Rn. The reverse equivalency is
easy.

Definition 1.1.6: Coordinate Chart

If M is an n-manifold, a coordinate chart is a map

φ : M ⊃ U
∼=−→ Û ⊂ Rn

Definition 1.1.7: Local Coordinates

For each p, if φ : U
∼=−→ Û is a coordinate chart about p (i.e. p ∈ U), then we can

write
φ(p) = (x1(p), . . . , xn(p)) ∈ Û ⊂ Rn.

We call the xi(p)’s the local coordinates of p in U . Sometimes when talking about
the point p we may just refer to its local coordinates instead of p.

Example 1.1.8: Empty Set is Manifold of any Dimension

The empty set ∅ is an n-manifold for every n.



CHAPTER 1. MANIFOLDS 4

Example 1.1.9: Sphere is manifold

Consider the unit sphere in Rn+1:

Sn = {x ∈ Rn+1 : |x| = 1}.

There are multiple ways to write down charts for the sphere, here’s one way: Let

U+
i = {(x1, . . . , xn+1) : xi > 0} ⊂ Sn

U−i = {(x1, . . . , xn+1) : xi < 0} ⊂ Sn

First of all, these are all open subsets of Sn and they cover Sn. We then define
the maps

φ±i : U±i → B1(0) ⊂ Rn

(x1, . . . , xn+1) 7→ (x1, . . . , x̂i, . . . , xn+1)

which is a homeomorphism with inverse

(x1, . . . , xn) 7→

x1, . . . , xi−1,

√√√√1−
n∑
i

x2
i , x

i, . . . , xn

 .

The Hausdorff and second-countable conditions are trivial since Sn is a subset of
Rn+1.

Example 1.1.10: Graph of continuous map is manifold

Suppose U ⊂ Rn is open, and f : U → Rk is a continuous map. Define the graph
of f to be

Γ(f) = {(x, f(x)) : x ∈ U} ⊂ Rn × Rk = Rn+k.

Consider the projection onto the first factor:

φ : Γ(f)→ U ⊂ Rn

which is a homeomorphism with inverse

x 7→ (x, f(x)).

This makes Γ(f) an n-manifold (with a single chart), embedded as a subset of
Rn+k.

The fact that graphs of continuous maps are manifolds also allow us to see that the
sphere is a manifold since it is “locally a graph".

Proposition 1.1.11: Product of Manifolds is Manifold

Suppose M and N are m- and n-manifolds respectively. Then M ×N is an m+n
manifold
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Proof. Given charts
φ : M ⊃ U → Û ⊂ Rm

and
ψ : N ⊃ V → V̂ ⊂ Rn

we can define

φ× ψ : M ×N ⊃ U × V → Û × V̂ ⊂ Rm × Rn = Rm+n

by
φ× ψ(U, V ) = (φ(U), ψ(V )).

Then φ× ψ is a chart for M ×N , and any (U, V ) is in the domain of such a chart. �

The above proposition immediately implies that the n-torus

Tn = S1 × · · · × S1︸ ︷︷ ︸
n-times

is an n-manifold.

Example 1.1.12: Real projective space is manifold

Consider real projective n-space, defined as

RPn = Sn /x ∼ −x

with the quotient topology. Recall that the quotient topology is the following: if
π : Sn → RPn is the projection, then U ⊂ RPn is open if and only if π−1(U) ⊂ Sn
is open.

Recall from Example 9 that there are charts on Sn

φ+
i : U+

i → Rn

where
U+
i = {(x1, . . . , xn+1) ∈ Sn : xi > 0}.

We claim that for all i, π
∣∣
U+

i

is a homeomorphism onto its image Vi ⊂ RPn. Indeed,
π
∣∣
U+

i

is injective since no pair of antipodal points on the sphere is contained in the
same hemisphere, it is surjective since π is a projection; it is continuous simply by
being a projection; and it is an open map since if W ⊂ U+

i is open, then

π−1(π(W )) = W ∪ −W

which is open in Sn, thus π(W ) is open in the quotient topology. Combining these
three properties of π

∣∣
U+

i

gives us the homeomorphism. Therefore, we have the
following charts for RPn:

φ+
i ◦

(
π
∣∣

U
+
i

)−1
: Vi → B1(0) ⊂ Rn.

§1.2 Covering Spaces and Group Actions
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Proposition 1.2.1

Suppose f : X → Y is a covering map and X is second-countable and Y is Haus-
dorff?. Then X is an n-manifold if and only if Y is.

Firstly, the requirement that X be second-countable is necessary, otherwise we may
have something like this: Let R be equipped with the discrete topology, so it is not
second-countable and thus not a manifold. Then

R→ {0}
is (trivially) a covering map but {0} is a 0-manifold.

Proof. We omit the proof for the Hausdorff and second-countable statements.
Suppose X is locally Euclidean. Given y ∈ Y , find a neighborhood U of y that is

evenly covered:
f−1(U) =

∐
i

Ui

where each f
∣∣
Ui

: Ui → U is a homeomorphism. Pick some i, and let x = f
∣∣
Ui

(y)−1, and
pick a neighborhood V of x with V ∼= Rn (from X being locally Euclidean). Without
loss of generality we can assume V = Ui. Then f(V ) is a neighborhood of y that
is homeomorphic to Rn, showing that Y is locally Euclidean. The other direction is
similar. �

Motivated by the above proposition, we would like to study covering spaces of man-
ifolds. We outline some facts relating covering spaces with group actions.

Definition 1.2.2: Properly discontinuous action

Suppose that Γ is a group acting by homeomorphisms on a manifold X, i.e. we
have a group homomorphism

Γ→ Homeo(X).

We say that the action is properly discontinuous if for all compact subset K ⊂ X,
we have that

{γ ∈ Γ: γ(K) ∩K 6= ∅}

is a finite set.

Example 1.2.3

1. If X is compact, then the action of Γ on X is properly discontinuous if and
only if Γ is a finite group.

2. Zn acting on Rn via v(x) = x + v for v ∈ Zn and x ∈ rn. Thus v ∈ Zn
corresponds to the homeomorphism of Rn that is translation of v. Now if
K ⊂ Rn is compact, then K ⊂ BR(0) ⊂ Rn for some radius R. If

v(K) ∩K 6= ∅

for some v ∈ Zn, it implies that there exists x ∈ Rn such that |x| ≤ R
and |x+ v| ≤ R, which together with the triangle inequality, means that
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|v| ≤ 2R. But there exists only finitely many v ∈ Zn with norm less than
or equal to 2R, thus the action is properly discontinuous. It is often useful
to draw the orbit of an element to visualize a group action. In this case, the
orbit of an element consists of integer translates of it:

3. If Γ is infinite and has a global fixed point, i.e. there exists x ∈ X such that
γ(x) = x for all γ ∈ Γ, then Γ does not act properly discontinuously. This
can be seen by taking K = {x}. For example, take the action of Z on R via
n(x) = 2nx for n ∈ Z and x ∈ R. Here the action fixes 0 ∈ R. here we have
orbits that look like this:

Definition 1.2.4: Free action

A group action of a group Γ acting on a set X is free if there exists no γ ∈ Γ \ eΓ
that fixes a point of X.

Example 1.2.5

1. The action of Zn on Rn in the previous example is free.

2. An example of a properly discontinuous but non-free action is the following:
Consider Z/2Z acting on R2 where the nontrivial element acts via (x, y) 7→
(x,−y).

3. An example of a free but not properly discontinuous action is the following:
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Consider Z acting on S1 = {eiθ | θ ∈ R} ⊂ C via

n(eiθ) = ei(θ+nα)

where we fix some real number α such that α
π is irrational. The the orbits

look like

where we never come back to any of the same points as the action rotates
each point. More precisely,

θ + nα = θ mod 2π

if and only if
n = 0.

Thus the action is free. The action is not properly discontinuous because S1

is compact and Z is not finite.

Theorem 1.2.6

If X is a locally compact Hausdorff space and Γ acts on X freely and properly
discontinuously by homeomorphisms, then the projection

π : X → Γ
∖
X

is a covering map.
Here Γ\X is the set of all orbits Γx equipped with the quotient topology given

by π(x) = Γx.

Recall that locally compact means that for any p ∈ X, there exists a neighborhood of
X with compact closure. For instance, all manifolds are locally compact, since under
a chart φ : U → Û , we can take a small enough ball around φ(x) inside Û , and the
preimage of this ball is the desired neighborhood around x with compact closure.

Corollary 1.2.7

If X is a manifold and Γ acts on X freely and properly discontinuously, then Γ\X
is a manifold.
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Proof of Theorem 6. Given x ∈ X, pick a neighborhood U of x with compact
closure. Then the set

∆ = {γ : γ(U) ∩ U 6= ∅}
is finite by definition of properly discontinuous action. Now by freeness of the action, no
γ ∈ Γ fixes x. Thus for any γ ∈ Γ\eΓ there exist disjoint open neighborhoods V andW ,
of x and γ(x) respectively (by Hausdorffness). Since the action is by homeomorphisms,
so in particular the action is continuous, γ−1(W ) is open. Then set

Uγ = V ∩ γ−1(W )

which is an open neighborhood of x contained inside V with the property that γ(Uγ) ⊂
W therefore

Uγ ∩ γ(Uγ) = ∅.
Here’s a diagram of what all this looks like up to this point:

Now set
O =

⋂
γ∈∆

Uγ ∩ U.

Then O is a neighborhood of x since ∆ is finite so O is a finite intersection of neighbor-
hoods of x. Further, O has the property that

γ(O) ∩O = ∅

for all γ ∈ Γ \ eΓ non-trivial elements of Γ. This is because if γ /∈ ∆ then γ(U) ∩ U = ∅
by the definition of Γ; on the other hand if γ ∈ ∆, then γ(Uγ) ∩ Uγ = ∅ (?????)

It follows that the sets
γO, γ ∈ Γ

are all disjoint. Indeed if
αO ∩ β 6= ∅

then
O ∩ α−1βO 6= ∅

contradicting 1.2. But then if we set

V = {Γx : x ∈ O}

we have
π−1(V ) =

⊔
γ∈Γ

γO

and π restricts to a homeomorphism

π
∣∣
γO

: γO → V

for each γ. �
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Example 1.2.8

1. Consider
RPn = Z/2Z

∖
Sn

where the non-trivial element of Z/2Z acts via x 7→ −x. This action is free
and properly discontinuous, so we get another proof that RPn is a manifold.

2. If Zn acts on Rn via v(x) = x + v for v ∈ Zn, x ∈ Rn, then Zn
∖Rn is an

n-manifold. In fact,

Zn
∖Rn ∼= S1 × · · · × S1 =: Tn

(verify this).

Definition 1.2.9: Fundamental domain

If Γ acts on X, a fundamental domain for the action is a closed set D ⊂ X such
that

1. Int(D) ∩ γ(Int(D)) = ∅.

2.
⋃
γ γ(D) = X.

Example 1.2.10: Fundamental domain of Z2 acting on R2

A fundamental domain is the following closed square:

Example 1.2.11: Fundamental domain of Z/2Z acting on S2
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We can take any closed hemisphere.

Because of the second condition in the definition of fundamental domain,

π : X → Γ
∖
X

restricts to a surjection on D, and hence to a quotient map on D, so

Γ
∖
X ∼= “Γ

∖
D ”

where the RHS is the quotient of D by the equivalence relation x ∼ y if there exists
γ ∈ Γ such that γ(x) = y.

Fundamental domains are helpful since only boundary points of D are identified, and
one can often take D to be a polygon where sides are identified by the Γ-action. For
instance, for Z2 acting on Z2 we have

giving us
“Γ
∖
D ” ∼= T 2.

And for Z/2Z acting on S2 we have

giving us
“Γ
∖
D ” ∼= RP 2.

Announcement: Office hours Tuesdays 2pm, Thursdays 8am.
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§1.3 Smooth Manifolds
Recall that a function f : Rn → Rn is Ck at p ∈ Rn if all the partial derivatives of
the component functions f i of f exist up to order k in a neighborhood of p and are
continuous there. So, we require continuity of the functions

∂`f i

∂xj1 . . . xj`
, i = 1, . . . ,m, ` ≤ k

in a neighborhood of p. We say f is smooth, or C∞ at p if it is Ck at p for all k. Common
examples of smooth functions: exponentials, trig functions, polynomials.

Problem 1. If M is an n-manifold and f : M → R, is a function, what should it mean
for f to be smooth at p ∈M?

Figure 1.1: We want to say that f is smooth at p if f ◦ φ(p)−1 is smooth at φ(p).

Problem: What if we use a different chart? Say we have two charts around p,
φ : U → Û ⊂ Rn and ψ : V → V̂ ⊂ Rn.

f ◦ φ−1 may be smooth at φ(p), but maybe f ◦ ψ−1 is not at ψ(p). Thus we need
the charts to be “compatible”:

If φ ◦ ψ−1 and ψ ◦ φ−1 are smooth then

f ◦ ψ−1 = f ◦ φ−1 ◦ (φ ◦ ψ−1),

so f ◦ψ−1 is smooth at ψ(p) if and only if f ◦ φ−1 is smooth at φ(p) since compositions
of smooth functions are smooth.

Definition 1.3.1

If φ : U → Û ⊂ Rn and ψ : V → V̂ ⊂ Rn are charts, then

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V )
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and
ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

are called the transition maps between the two charts. We say that φ and ψ are
smoothly compatible if their transition maps are smooth.

A set of charts whose domains cover m is an atlas for M . An atlas A is called
smooth if all its charts are smoothly compatible.

Definition 1.3.2: Smooth function

If M is equipped with a smooth atlas, then f : M → R is smooth at p ∈M if

1. there exists a chart (U, φ) around p such that f ◦ φ−1 is smooth at φ(p), or
equivalently

2. for all charts (U, φ) around p, f ◦ φ−1 is smooth at φ(p).
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Example 1.3.3

Some smooth atlases function equivalently: on the 1-manifold R we have atlases

A = {(R, Id)}

and
B = {((x− 1, x+ 1), Id) : x ∈ R}.

But f : R→ R is A-smooth if and only if f is B-smooth if and only if f is smooth
in the usual sense.

Example 1.3.4

Still on R, take again
A = {(R, Id)}

and
B = {(R, x 7→ x3)}.

But now the function Id: R→ R is A-smooth, yet it is not B-smooth, since

Id ◦(x 7→ x3)−1 = x 7→ 3
√
x

which is not smooth at 0.

Definition 1.3.5: Maximal atlas and smooth structure

A smooth atlas A is maximal if it is not contained in a larger smooth atlas.
Equivalently, A is maximal if any chart that is compatible with all charts in A is
in A.

Definition 1.3.6: Smooth structure, smooth manifold

A smooth structure on M is a maximal smooth atlas. A smooth manifold is a
manifold equipped with a smooth structure.

Example 1.3.7

1. Rn equipped with the “idenity chart" {Id : Rn → Rn}, which generate the
maximal atlas

A = {φ : U → Û smooth homeo btw open subsets of Rn with smooth inverse}

2. If V is an n-dim vetor space, then we can consider the atlas

A = {linear isomorphism L : V → Rn}.
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This is a smooth atlas, since the transition maps are of the form

L′ ◦ L−1 : Rn → Rn

where L,L′ ∈ A, so is smooth (The topology on V is either given by requiring
that every such L is a homeomorphism. or alternatively pick a norm |·| on
V and set d(v, w) = |v − w| to get a metric on V ).

3. If V,W are m,n-dimensional vector spaces, then the space of linear maps
L(V,W ) is a vector space of dimension mn, and hence is a smooth manifold.

4. We shall consider all 0-manifolds to be smooth manifolds. Here, a 0-manifold
is a countable set equipped with the discrete topology, since R0 is a point.
Charts have the form

{pt} → R0

and transition maps R0 → R0 are just the unique map, which we will consider
to be smooth.

5. Sn with the charts which we constructed before form a smooth atlas.
PIC

φ+
j ◦ (φ+

i )−1(x1, . . . , xn)

= φ+
j

x1, . . . , xi−1,

√
1−

∑
k

(xk)2, xi, . . . , xn


=

x1, . . . , xi−1,

√
1−

∑
k

(xk)2, xi, . . . , x̂j , . . . , xn


6. Products of smooth manifolds have a natural smooth structure.

7. Open subset U ⊂ M where M is a smooth manifold. Since for every chart
φ : V → V̂ for M , you get a chart φ

∣∣
U∩V for U . Transition maps are restric-

tions of transition maps. For example, if V is a vector space, consider

GL(V ) = {linear isomorphisms V → V }

which is an open subset of the vector space L(V, V ), and hence is a smooth
manifold of dimension (dimV )2. By the way, it is an open subset because

GL(V ) = det−1(R \ 0)

where R \ 0 is open, and det : L(V, V )→ R is continuous.

Smooth manifold with boundary Smooth manifolds with boundary are defined in
the same way, requiring that transition maps between charts

φ : U → Û ⊂ Hn

are smooth. Note that the transition maps go from open subsets of Hn to open subsets
of Hn. Here, if A ⊂ Rn a map f : A → Rk is smooth if f extends to a smooth map
defined on a neighborhood of A.
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Proposition 1.3.8

Every smooth atlas for M is contained in a unique maximal one. Two smooth
atlases determine the same maximal one if and only if the charts in one are com-
patible with the charts in the other.

Proof. �

Lemma 1.3.9

If M is a set and {Uα} are subsets of M with bijections

φα : Uα → Ûα ⊂ (open) Rn

or Hn if you want a manifold with boundary. Such that

1. for all α, β the sets φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ) are open in Rn and the
transition map φβ ◦ φ−1

α is smooth.

2. Countably many of the Uα cover M .

3. If p 6= q in M , either there exist Uα 3 p, q or there exist disjoint Uα, Uβ
containing p, q respectively.

Then there exists a unique smooth structure on M where the φα are charts.

Proof. See Lee. �

Here, the topology on M is generated (as a basis) by the preimages φ−1
α (V ), where

V ⊂ Ûα is open.
You can use this to define a smooth structure on a vector space.

Example 1.3.10

et V be an n-dim vector space. Define

Gk(V ) = {k-dim subspace H ⊂ V }

this is called the Grassmannian of k-dim subspaces of V . We want to show that
Gk(V ) is naturally a k(n− k)-manifold. See Lee for the details of the idea. Given
a decomposition V = A⊕B where dim(A) = k and dim(B) = n− k, then for any
linear map f ∈ L(A,B), consider the graph of f :

Γ(f) = {a+ f(a) : a ∈ A}

is a k-dim subspace of V . So we can use

L(A,B)→ Gk(V )
f 7→ Γ(f)

as the inverse of a chart for Gk(V ). See Lee for details about why transition maps
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are smooth (they’ll turn into matrix additions and multiplications after choosing
suitable coordinates).

Definition 1.3.11

If M,N are smooth manifolds, we say that a function f : M → N is smooth at
p ∈M is there exists

PIC
such that ψ ◦ f ◦ φ−1 is smooth at φ(p). We call

ψ ◦ f ◦ φ−1

the the coordinate representation of f .
We say that f is smooth if it is smooth at every p ∈M .

Example 1.3.12

1. Smooth maps of Euclidean spaces, with repesct to the standard smooth struc-
ture on Rn.

2. Constant maps, identity maps.

3. The inclusion i : U →M of an open submanifold. If p ∈ U , take an M -chart
ψ : V → V̂ around p = i(p). Then

ψ
∣∣
V ∩U : V ∩ U → φ(V ∩ U)

is a chart for U around p. So the coordinate representation is

ψ ◦ i ◦ (ψ
∣∣
V ∩U )−1 = Id

which is smooth.

4. Consider A : Sn → Sn defined by A(x) = −x. This is called the antipodal
map. If for instance p ∈ U+

i then on U+
i we have

φ−i (−x) = −φ+
i (x)

PIC
Thus the coordinate representation of our map is z 7→ −z, which is smooth.

Some facts about smooth maps:

1. Smooth maps are continuous.

2. Composition of smooth maps are smooth.

Theorem 1.3.13: Diffeomorphism
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A smooth bijection f : M → N with smooth inverse f−1 is called a diffeomorphism.
If there exists a diffeomorphism f : M → N we sayM and N are diffeomorphic

Example 1.3.14

1. If Snr {x ∈ Rn+r : |x| = r}, then Snr is naturally a smooth manifold (just like
with Sn), and if r, s > 0,

Snr → Sns

x 7→ s

r
· x

is a diffeomorphism. Using the orthogonal projection charts, the coordinate
representation of the above will be also x 7→ s

r · x. Thus spheres of different
radii are all diffeomorphic.

2. Consider the smooth 1-manifolds

(R, {ß: R→ R}), (R, {x 7→ x3}).

We have the diffeomorphism

f : (R, {ß: R→ R})→ (R, {x 7→ x3})
x 7→ 3

√
x

This is a bijection, and in coordinates it is
PIC
so the coordinate representation is the identity map, so is smooth. Similarly
f−1 is smooth.

Remark 1.3.15

Milnor-Kervaire (1963) showed that there exists 15 smooth structures on S7 up
to diffeomorphism. Donaldson-Freedman (1984) showed there exists uncountably
many smooth structures on R4 up to diffeomorphism. In dimensions 1,2,3 any topo-
logical manifold admits a unique smooth structure up to diffeomorphism (Rado,
Bing, Moire).

Definition 1.3.16: Smooth covering map

If M,N are smooth manifolds, a smooth covering map is a map π : M → N such
that for all p ∈ N there exists a neighborhood V 3 p such that

π−1(V ) =
⊔
i

Vi
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where each
π
∣∣
Vi

: Vi → V

is a diffeomorphism.

Example 1.3.17

π : R→ S1

t 7→ (cos t, sin t)

is a smooth covering map. If

U = {(x, y) ∈ S1 : y > 0}

then
π−1(U) =

⊔
k∈Z

(2πk, 2πk + π).

The map

U → (−1, 1)
(x, y) 7→ x

is a chart for S1, so in local coordinates π is the map t 7→ cos t, which is smooth.
One can check that the inverse U → [2πk, 2πk + π] is smooth for all k as well.

Consider

R→ R
x 7→ x2

which is smooth, and is a covering map since it is a homeomorphism, but it is not a
smooth covering map.

Proposition 1.3.18

If X → Y is a (topological) covering map, and Y is a smooth manifold, then there
exists a unique smooth structure on X such that π is a smooth covering map

Proof. Idea: Given x ∈ X, pick an evenly covered neighborhood of π(x), i.e.

π(x) ∈ U, π−1(U) =
⊔
i

Ui.

Shrinking U , we can assume we have a chart φ : U → Û ⊂ Rn. If x ∈ Ui then φ◦π : Ui →
Û we can take as a chart around x. These form a smooth atlas for X. For local
coordinates around x, π(x), we can take the charts φ ◦ π and φ and then the coordinate
representation is

π ◦ (φ ◦ π)−1 = Id
so π is a diffeomorphism Ui → U . �
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Proposition 1.3.19

Suppose X is a smooth manifold and Γ acts on X properly discontinuously and
freely by diffeomorphisms. Then there exists a unique smooth structure on Γ\X
such that the quotient map

π : X → Γ
∖
X

is a smooth covering map.

Proof. See Prop. 4.40 in Lee. Idea: Given p ∈ X, let U 3 p be a neighborhood all of
whose translates γ(U), γ ∈ Γ, are disjoint. Shrinking U , we can assume it is the domain
of a chart φ : U → Û ⊂ Rn. Then π(U) ⊂ Γ\X is open and

π
∣∣
U

: U → π(U)

is a homeomorphism, so we can take

φ ◦ π
∣∣
U

−1 : π(U)→ Û

as a chart for Γ\X around π(p).
PIC
If π(p) = π(q) ∈ Γ\X, then q = γ(p) for some γ ∈ Γ.
PIC
and on V ∩ γ(U) we have (

π
∣∣
U

)−1 ◦ π
∣∣
V

= γ−1

so near ψ(q), the transition map is φ ◦ γ−1 ◦ ψ−1, which is smooth since γ−1 : X → X
is smooth. �

§1.4 Constructing Smooth Maps

Lemma 1.4.1

The function f : R→ R defined by

f(t) =
{
e−

1
t t > 0

0 t ≤ 0

is smooth.

Proof. PIC
Idea: The point is to show that f is smooth at t = 0. Every time you take a

derivative, a − 1
t2 comes down from an exponent. But for all k,

1
t2k
· e− 1

t → 0 as t→ 0

because exponentials grow faster than polynomials. This “implies" that f (k) = 0 for all
k.

See Lee for details. �
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Lemma 1.4.2

Given 0 < r1 < r2, there exists a smooth function H : Rn → R such that

H ≡ 1 on Br1(0)

0 < H < 1 on Br2(0) \Br1(0)

H ≡ 0 on Rn \Br2(0)

We call H a bump function.

PIC

Proof. Set
H(x) = f(r2 − |x|)

f(r2 − |x|) + f(|x| − r1)
where f is the function defined in the previous lemma. Then since 0 ≤ f ≤ 1, we must
also have 0 ≤ H ≤ 1.

We have
|x| < r1 ⇔ f(|x| − r1) = 0⇔ H = 1.

And similarly
|x| < r2 ⇔ f(r2 − |x|) = 0⇔ H = 0.

It is smooth since f is smooth and the denominator is never 0; and the fact that |·| is
not smooth at x = 0 does not matter since H ≡ 1 in a neighborhood of the origin. �

Definition 1.4.3

If f : M → R is a function, we define the support of f to be

supp(f) := {p ∈M : f(p) 6= 0}.

We say f is compactly supported if supp(f) is compact.

For instance, H as defined above has support

supp(H) = Br2(0)

and so H is compactly supported.

Example 1.4.4

If M is a manifold and
φ : U → B3(0) ⊂ Rn

is a chart, then setting r1 = 1, r2 = 2 above in the construction of H, we can
define

F : M → R

x 7→

{
H ◦ φ(x) x ∈ U
0 otherwise
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Then this is a non-constant smooth function on M , which we can also call a bump
function.

PIC
If x ∈ U , then we can use φ as our chart around x, and the local coordinate

representation of F is H, which is smooth. If x /∈ U , then since supp(F ) is a
compact subset of U , so there exists a neighborhood of x on which F ≡ 0, so F is
smooth at x.

Now we can create many smooth functions on M by summing up bump functions.

Definition 1.4.5: Locally Finite Collection of Subsets

A collection A of subsets of M is locally finite if every p ∈M has a neighborhood
U that intersects only finitely many elements of A.

Definition 1.4.6: Refinement of an Open Cover

If A is an open cover of M , a refinement of A is another open cover R such that
for any R ∈ R there exists A ∈ A with R ⊂ A.

Definition 1.4.7: Paracompact

We say M is paracompact if every open cover of M admits a locally finite refine-
ment.

Example 1.4.8

An open cover of R that is not locally finite:

O = {(a, b) : a < 0, b > 0}

This is not locally finite since there exists infinitely many intervals and they all
contain 0.

A locally finite refinement of O is

U = {(x− 2, x+ 2): x ∈ Z}

since given p ∈ R, only finitely many intersect (p− 1, p+ 1). Also, for all x,

(x− 2, x+ 2) ⊂ (−|x− 2| − 1, ||)

Theorem 1.4.9: Existence of Locally Finite Refinement for a Cover on Manifold

Let M be a topological manifold and B be a basis of open sets. If A is an open
cover of M , then there exists a locally finite refinement R of A with R ⊂ B. In
particular, manifolds are paracompact.
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Lemma 1.4.10

M is σ-compact, i.e. there exists a sequence K1 ⊂ K2 ⊂ . . . of compact sets with⋃
i

Ki = M

i.e. {Ki} is a compact exhaustion of M .

Proof. Fix a countable basis B for M . For each p ∈ M , let Up be a neighborhood of
p with compact closure, and let Bp be a basis element with

p ∈ Bp ⊂ Up.

Choose an enumeration of
B′ = {Bp : p ∈M}

as
B′ = {B1, B2, B3, . . . }

Then set

K =
i⋃

j=1
Bj

The Bj is a closed subset of some Up, which is compact, so itself is compact, and⋃
i

Ki = M.

�

Proof of Theorem. Let (Ki) be a compact exhaustion of M as in the Lemma.
PIC
Set

Vj = Kj+1 \ Int(Kj)
so is compact; and

wj = IntKj+2 \Kj−1

so is open. If p ∈ Vj , pick some Ap ∈ A with p ∈ Ap and then pick a basis element

Bp ∈ B, and p ∈ Bp ⊂ Ap ∩Wj .

Then the union of all such Bp covers Vj , which is compact, so there exists a finite
subcover. Let B′ be the union of all these finite subcovers for j = 1, 2, 3, . . . . Then
B′ ⊂ B and is a locally finite refinement of A. Check each of these. For local finiteness:
Given p ∈M , p ∈ Vi for some i, and then Wi is a neighborhood of p. But the sets above
only intersect Wi for

i− 2 ≤ j ≤ i+ 2
and there are finitely many elements of B′ associated to each j, so only finitely many
intersect Wi. �

Definition 1.4.11: Partition of Unity

Suppose M is a topological space, and X = {Xα} an open cover. A partition of
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unity subordinate to X is a family

ρα : M → [0, 1]

satisfying

1. supp ρα ⊂ Xα for all α.

2. The set of supports {supp ρα} is locally finite, i.e. every point of M has a
neighborhood that intersects only finitely many supports.

3.
∑
α ρα(x) = 1 for all x ∈M .

Theorem 1.4.12: Existence of Partitions of Unity

Suppose M is a topological manifold, with or without boundary. Take X = {Xα}
an open cover. Then there exists a partition of unity subordinate to X. If M is
smooth one can take the functions in the partitions of unity to be smooth.

Proof. Let’s assumeM is a smooth manifold without boundary. By the theorem from
last time, there exists a locally finite refinement {Ui} of X such that for each i, there
exists some Vi ⊃ Ui and a chart

φi : Vi → B3(0) ⊂ Rn

such that
Ui = φ−1

i (B2(0)).
such Ui’s form a basis for the topology of M . Let

H : Rn → [0, 1]

be > 0 exactly on B2(0) and = 0 otherwise. Then set

fi : M → R

defined by

f(x) =
{
H ◦ φi x ∈ Vi
0 otherwise

Then this fi is smooth, with support supp fi = Ui. Since {Ui} is locally finite, thus so
is the set of supports

{supp fi} = {Ui}.
This is because if a neighborhood W 3 p intersects Ui, it intersects Ui too. Each fi is
supported inside Ui, which is contained in some Xα. Something went wrong here, see
Lee ?

While probably
∑
fi 6= 1, not that each p has a neighborhood on which only finitely

many fi are non-zero (supports are locally finite), so

f(x) =
∑
i

fi(x)

is well defined and smooth. Also, f > 0 because fi > 0 on Ui and the Ui cover M . So,
if we set

gi = fi
f

then we have
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1. supp gi = Ui ⊂ some Xα

2. {supp gi} is locally finite

3.
∑
gi = 1

Problem: gi’s are indexed by i, not α. So, for each i, pick some α(i) such that

Ui ⊂ Xα(i).

Then for a given α, set
ρα =

∑
i : α(i)

gi

We have supp ρα =
⋃
i|α(i)=α Ui ⊂ X �

Corollary 1.4.13: Existence of Smooth Bump Functions

Suppose M is a smooth manifold. For any closed A ⊂M and open A ⊂ U . Then
there exists a smooth bump function for A supported in U . That is, there exists a
smooth function f : M → [0, 1] such that

f ≡ 1 on A, supp f ⊂ U.

Proof. Set V = M \A, and let {ρU , ρV } be a partition of unity subordinate to {U, V },
where supp ρU ⊂ U, supp ρV ⊂ V . Then ρU has the desired properties: ρ ≡ 1 on A since
supp ρV ⊂ V implies ρV ≡ 0 on A and we must have ρU + ρV = 1. �

§1.4.1 Some Applications of Partitions of Unity

Definition 1.4.14: Proper Map

A map f : M → N is proper if preimages of compact sets are compact. i.e. when-
ever K ⊂ N is compact, so is f−1(K).

Here’s an example of a proper map

Rn → [0,∞]
x 7→ ‖x‖

Indeed, if K ⊂ [0,∞] is compact, then K ⊂ [0, r] for some r < ∞, thus f−1(K) ⊂
f−1([0, r]) = Br(0) ⊂ Rn, which is compact. Since K is closed, and the function is
continuous, the preiamge f−1(K) is a closed subset of the compact set Br(0) and hence
is compact.

how to interpret properness? Recall that the 1-point compactification of a metric
space X is the space

X̂ = X ∪ {∞}

where the topology is generated by open subsets ofX, and sets of the form (X\K)∪{∞}
where K ⊂ X is compact.
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A sequence (xn) is X converges to ∞ in X̂ is defined to be: for all K ⊂ X compact,
there exists N ∈ N such that xn /∈ K for all n ≥ N . We usually write xn → ∞; or say
“xn exists every compact subset of X", or “(xn) exists X".

What’s the point? f : X → Y is proper if and only if whenever xn → ∞ then
f(xn)→∞ as well. E.g. if xn →∞ in Rn, then the norm |xn| → ∞.

Here’s the application of partitions of unity:

Corollary 1.4.15

If M is a smooth manifold (even with boundary), there exists a smooth proper
function f : M → [0,∞).

PIC
Note: If M is compact, we can take f to be constant.

Remark 1.4.16

You can replace second-countability in the definition of a manifold with metrizabil-
ity. This is naively related to the Corollary, in that you’d like to set f(x) = d(x, p)
for some fixed p. But this function may not be smooth, and may not be proper,
e.g. if M = (0, 1) with Euclidean distance.

Proof. Let {Vj} be a countable open cover of M where each Vj has compact closure
(invoking second-countability). Let {ρj} a subordinate partition of unity. Set

f : M → [0,∞)

p 7→
∑
j

j · ρj(p)

This f is smooth and positive. If K ⊂ R is compact, pick r > 0 such that K ⊂ [−r, r].
Then if p ∈ f−1(K), we have

f(p) =
∑
j

j · ρj(p) < r.

so some j with ρj(p) 6= 0 satisfies j < r. Thus p ∈ Vj for some j. So

f−1(K) ⊂
r⋃
j=1

Vj

which is compact. We also know f−1(K) is compact since f is smooth so is continuous.
�

§1.5 Lie Groups

Definition 1.5.1: Lie group

A Lie group is a smooth manifold G with a group structure such that the multi-
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plication and inversion maps

m : G×G→ G

(a, b) 7→ ab

i : G→ G

a 7→ a−1

are smooth.

Example 1.5.2

1. (Rn,+)

2.
GLn(R) = {invertible n× n matrices}

is an open subset of {n×n matrices} ∼= Rn2 and hence is a smooth manifold.
Matrix multiplication is polynomial in the entries, so is smooth. Cramer’s
rule gives a formula for A−1 in terms of determinants of submatrices of A,
and determinants are polynomials of the entries, so the entries of A−1 are
rational functions (with denominator detA 6= 0) in the entries of A, and
hence smooth.
Also, if V is a finite dimensional vector space, GL(V ) is a Lie group.

3. S1 = {eiθ : θ ∈ R} ⊂ C with complex multiplication. (You check)

4. If G and H are Lie groups, then G×H is.

5. Any discrete, countable group is a 0-dim Lie group.

Remark 1.5.3

If G is a Lie group, g ∈ G, let

Lg : G→ G

Lg(x) 7→ gx

be the “left translation by g" map. This map is smooth because multiplication
is smooth, it also have an inverse Lg−1 , so is a diffeomorphism. If we let g act
on G via Lg, we have a transitive action of G on itself by diffeomorphisms. So
in particular, no manifold with non-empty boundary has a smoothly compatible
group structure since there does not exist a diffeomorphism taking a boundary
point into the interior.

Definition 1.5.4: Lie group homomorphism

If G,H are Lie groups, a Lie homomorphism is a smooth group homomorphism
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f : G→ H.

Example 1.5.5

1. S1 ↪→ C∗ = C \ 0.

2. exp: (R,+)→ (R>0,×) is a Lie group isomorphism.

3. det : GLn(R)→ R 6=0.

4. f : R→ S1, f(t) = e2πit.

Any topological manifold G with a continuous group structure admits a smooth
structure with respect to which the operations are smooth, and even such a real analytic
structure. Real analytic maps of Rn are those that are locally expressible as power series.
A real analytic structure on a manifold is an atlas with real analytic transition maps.
See Gleeson, Montgomery, Zippin 1952, answering Hilbert’s 5th Problem.

Also, any continuous group homomorphism between Lie groups is smooth.



Chapter 2

Calculus on Manifolds

§2.1 From Multivariable Calculus
We start by doing some review of multivariable calculus. If p ∈ Rn, the tangent space
at p is

TRnp := Rn

viewed as the space of vectors based at p.
PIC
We define

Head : TRnp → Rn

v 7→ v + p

V ecp : Rn → TRnp
x 7→ x− p

Suppose U ⊂ Rn is open. Then f : U → Rn is differentiable at p ∈ U if there exists
a linear map

dfp : TRnp → TRmf(p)

called the derivative map, such that

lim
x→p

|f(x)−Head(dfp(V ecp(x)))|
|x− p|

In other words, the linear map dfp approximates f up to first-order at p:

Example 2.1.1

If L : Rn → Rm, and p ∈ Rn, then L is differentiable at p with dLp = L.

Exercise: Show dfp is unique if it exists.
If f is differentiable at p, then in coordinates, dfp is represented by the Jacobian

matrix

Jfp =


∂f1
∂x1 . . . ∂f1

∂xn

... . . . ...
∂fm

∂x1 . . . ∂fm

∂xn


where f = (f1, . . . , fm).

Example 2.1.2

γ : (a, b)→ Rn is differentiable at p if and only if the derivatives of all the compo-

29
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nents γi exist, in which case

dγt(1) = Jγp =


dγ1
dt
...

dγn

dt


where 1 ∈ Rn = TRnt . This is equal to

lim
s→0

γ(t+ s)− γ(t)
s

= γ′(t)

i.e. the velocity vector of γ at time t. Picture:
PIC

Remark 2.1.3

In higher dimensions, it is not true that f is differentiable when all partial deriva-
tives exist, e.g.

f : R2 → R

(x.y) 7→
{

0 x = 0 or y = 0
1 otherwise

Then this has all partials defined at 0, but is not differentiable at 0.

Theorem 2.1.4

If f is C1 in a neighborhood of p, i.e. all first partial derivatives exist and are
continuous in a neighborhood of p, then f is differentiable at p.

Suppose f : Rn ⊃ U → Rm is differentiable at p, v ∈ TRnp . Then dfp(v) is called the
directional derivative of f in the direction of v. What is it? Let us try approaching p
along the path t 7→ p+ tv.

lim
t→0

|f(p+ tv)− (dfp(tv) + f(p))|
|tv|

= 0

then multiplying by |v| and reorganizing:

lim
t→0

∣∣∣∣f(p+ tv)− f(p)
t

− tdfp(v)
t

∣∣∣∣ = 0

Thus
dfp(v) = lim

t→0

f(p+ tv)− f(p)
t

PIC

Example 2.1.5
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If v = ei, the ith standard basis vector, then

dfp(ei) = lim
t→0

f(p+ tei)− f(p)
t

=


∂f1
∂xi

...
∂fm

∂xi


A Corollary of this is that dfp is represented in coordinates by the Jacobian Jfp, the
matrix of partials. Here’s the proof: The coordinate representation of dfp is

(dfp(e1), · · · ,dfp(en)) = Jfp.

Example 2.1.6

Let f : Rn → R, f(x, y) = x2 − y2.
PIC

Jf(0,0) = (0, 0), Jf(1,0) = (2, 0)

so this is saying at (0, 0), f is well-approximated by the zero function; and at (1, 0)
it is well-approximated by (x, y) 7→ 2x.

Theorem 2.1.7: Chain rule

Suppose
f : Rn ⊃ U → Rm, g : Rm ⊃ V → Rk

and f(p) ∈ V . If f, g are differentiable at p, f(p) respectively, then g ◦ f is differ-
entiable at p and

d(g ◦ f)p = dgf(p) · dfp.

Corollary 2.1.8

If f : U → V is a diffeomorphism, then

df−1
f(p) = (dfp)−1.

In particular this implies dfp is invertible.

Proof. Apply chain rule to f ◦ f−1 = Id. �

Corollary 2.1.9

If f : Rn ⊃ U → V ⊂ Rm is a diffeomorphism, then m = n.

Proof. dfp : Rn → Rm is a linear isomorphism, so m = n. �
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§2.2 On Manifolds
We would like to define tangent spaces and derivatives for manifolds and smooth maps

PIC

§2.3 Tangent Space
We want for every manifold M , point p ∈M , a vector space TMp, the tangent space at
p. We also want for every f : M → N that is smooth at p, we want a linear map

dfp : TMp → TNf(p)

such that

1. TRnp := Rn, and THn
p := Rn defined as before, and the derivative dfp of a map

f : Rn ⊃ U → V ⊂ Rm is as before (i.e. generalizing what we did before).

2. If Id : M →M is the identity map, then d Idp = Id: TMp → TMp for all p.

3. (Locality) If U ⊂M is open and i : U ↪→M is the inclusion, then

dip : TUp → TMp

is an isomorphism for all p.

4. (Chain rule) If f : M → N , and g : N → P are smooth at p, f(p) respectively, then

d(g ◦ f)p = dgf(p) ◦ dfp

Properties 2 and 4 together imply that if f : M → N is a diffeomorphism, then dfp is
an isomorphism for all p.

Now if M is an n-manifold, say even with boundary, then TMp is n-dimensional for
all p ∈M . Indeed, pick a chart φ : U → Û ⊂ Hn around p. Then

M ←↩ U φ−→ Û ↪→ Hn

taking derivatives:

TMp
dip←−− TUp

dφp−−→ TÛφ(p)
dip−−→ THn

φ(p)
∼= Rn

where these maps are isomorphisms. In the future, we will often use locality to identify
TUp = TMp. In this case, you can interpret the above as saying that a chart induces
an isomorphism

“dφp : TMp → THn
φ(p)”

§2.3.1 A Construction of the Tangent Space at p

Pick a chart at p
φ : U → Û

and define TMp = TRnφ(p). But we don’t want to have to pick a specific chart. So
rigorously, set

TMp := {(φ, v) : φ : U → Û ⊂ Rn is a chart around p, v ∈ TRnφ(p)} /∼
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where (φ, v) ∼ (ψ,w) if
d
(
ψ ◦ φ−1)

φ(p) (v) = w.

This is an equivalence relation: for instance if (φ, v) ∼ (ψ,w) then

d
(
φ ◦ ψ−1)

ψ(p) (w) = d
(
ψ ◦ φ−1)

ψ(p) (w)

= d(ψ ◦ φ−1)−1
φ(p)(w)

= v.

You can verify reflexivity and transitivity.
At this point the tangent space is not a vector space yet. For all charts φ, the map

TRnφ(p) → TMp

v 7→ [(φ, v)]

is a bijection. It is injective because (φ, v) ∼ (φ,w) implies w = d
(
φ ◦ φ−1) (v) thus

v = w. It is surjective because if [(ψ,w)] ∈ TMp, then

(ψ,w) ∼ (φ, d
(
φ ◦ ψ−1) (w)).

We then define a vector space structure on TMp so the above bijective maps are linear
isomorphisms. That is, given two elements of TMp, we can represent them as pairs
[(φ, v)], [(φ,w)] and define

[(φ, v)] + [(φ,w)] = [(φ, v + w)]

and similarly
λ[(φ, v)] = [(φ, λv)].

This is well defined since d
(
ψ ◦ φ−1) is linear.

Definition 2.3.1

If f : M → N is smooth at p, we define

dfp : TMp → TNf(p)

by
dfp([φ, v)]) = [(ψ,d

(
ψ ◦ f ◦ φ−1)

φ(p) (v))]

where φ is a chart around p, and ψ is a chart of N around f(p).

Exercise: Show well defined, and linear. The linearity follows from the fact that
d
(
ψ ◦ f ◦ ψ−1) is linear.
Now we must verify the properties we wanted in the beginning.

2. Identity Given Id: M → M , pick a chart φ around p ∈ M and use it for both
charts in the domain and range. So

d Idp([φ, v]) = [(φ, d
(
φ ◦ Idφ−1)

p
(v))] = [φ, v]
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3. Locality If U ⊂M is open, pick a chart φM for M around p and restrict it to give
a chart φU for U . Then if i : U ↪→M is the inclusion,

dip([φU , v]) = [φ, d
(
φM ◦ i ◦ φ−1

U

)
φU (p) (v)]

= [φ, v]

thus dip is an isomorphism.
Try to verify the chain rule.

Theorem 2.3.2

There exists only one definition of TMp,dfp up to canonical isomorphism.

Proof. Homework. �

§2.4 Derivations
Let M be an n-manifold and let

C∞(M) = {smooth functions M → R}.

This is an algebra over R, i.e. elements of C∞(M) can be scaled by real numbers, and
they can be added and multiplied pointwise.

Let v ∈ TMp, define the map

Dv : C∞(M)→ R
f 7→ dfp(v) ∈ TRf(p) ∼= R

where we called dfp(v) the derivative of f in the direction v (directional derivative).

Proposition 2.4.1

If f, g ∈ C∞(M), then

1. Dv(λf) = λ ·Dv(f), for all λ ∈ R.

2. Dv(f + g) = Dv(f) +Dv(g).

3. (product/Leibniz rule) Dv(f, g) = Dvf · g(p) + f(p) ·Dvg.

Proof. First, note that the proposition is true for M = Rn:
1. Trivial.

2. Trivial.

3. This is the multivariable product rule, which can be proved by considering Jacobian
matrices, which amounts to using the one-variable product rule to write out all
the partial derivatives.

For the general case, choose a chart φ : U → Û ⊂ Rn around p. Then for all f ∈ C∞(M),

Dv(f) = dfp(v)
= d

(
f ◦ φ−1)

φ(p) (dφp(v)) chain rule backwards

= Ddφp(v)(f ◦ φ−1).
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Moreover,
(f + g) ◦ φ−1 = f ◦ φ−1 + g ◦ φ−1

(f · g) ◦ φ−1 = (f ◦ φ−1) · (g ◦ φ−1)
so

Dv(f + g) = Ddφp(v)((f + g) ◦ φ−1)
= Ddφp(v)(f ◦ φ−1 + g ◦ φ−1)
= Ddφp(v)(f ◦ φ−1) +Ddφp(v)(g ◦ φ−1).

And similarly for products and also for scaler multiplication. �

Definition 2.4.2: Derivations at p

A derivation of C∞(M) at p is a linear map

∆: C∞(M)→ R

such that
∆(fg) = ∆(f)g(p) + f(p)∆(g).

The set of all derivations at p is written DMp and is a vector space under addition.

The Proposition above says that we have a map

TMp → DMp

v 7→ Dv

This map is linear, since Dαv+βw = αDv+βDw since dfp is linear for every f .

Theorem 2.4.3

This map above v 7→ Dv is an isomorphism of vector spaces.

This gives another proof of the uniqueness of TMp up to isomorphism. Alternatively,
you can define TMp as DMp, like in Lee.

Before the proof, we need some facts about derivations. Let ∆ ∈ DMp. Then

1. If f is constant, then ∆(f) = 0.

2. If f(p) = g(p) = 0, then ∆(fg) = 0.

3. If f = g in a neighborhood of p, then ∆(f) = ∆(g).

Proof. 1. It suffices by linearity to show that ∆(1) = 0. We have

∆(1) = ∆(1 · 1)
= ∆(1) · 1 + 1 ·∆(1)
= 2∆(1),

implying ∆(1) = 0.

2. This follows immediately from the product rule.
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3. Suppose ρ : M → R is a smooth function that vanishes outside U , and ρ ≡ 1 in
the neighborhood of p where f = g (its existence is guaranteed by the existence
of smooth bump functions). Then

0 = ∆(ρ · (f − g)) since 0 = (f − g)(p)
= ∆(f − g)ρ(p) + ∆(ρ)(f − g)(p)
= ∆(f − g)
= ∆(f)−∆(g).

�

§2.5 Tangent Vectors in Coordinates
In Rn, we will sometimes use the notation ∂

∂xi

∣∣
p
for the element ei ∈ TRnp . The notation

reflects that we can view ei as the associated directional derivative, i.e. the ith partial.
If φ = (x1, . . . , xn) is a chart for M , we will also abusively write

TMp 3
∂

∂xi

∣∣∣∣
p

:= dφ−1
p

(
∂

∂xi

∣∣∣∣
φ(p)

)
∈ TRnφ(p).

PIC
The vectors ∂

∂xi

∣∣
p
, i = 1, . . . , n form a basis for TMp.

§2.6 Velocity Vectors
Suppose γ : (a, b)→M is a smooth path. Then

d
dtγ(t) = γ′(t) := dγt

(
∂

∂t

)
∈ TMγ(t)

is called the velocity vector of γ at time t.
PIC

Proposition 2.6.1

Any v ∈ TMp is a velocity vector of some smooth path γ with γ(0) = p.

Proof. Pick a chart φ around p and take the path

γ : (−ε, ε)→M

t 7→ φ−1((φ(p) + tdφp(v))︸ ︷︷ ︸
line in Rn

which is defined for small ε. Then

γ(0) = φ−1(φ(p)) = p
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and

γ′(0) = dγ0

(
∂

∂t

)
= dφ−1

φ(p)

(
d
dt (φ(p) + tdφp(v))

∣∣∣∣
t=0

)
= dφ−1

φ(p)(dφp(v))
= v.

�

So we can now view tangent vectors as velocity vectors of paths. Also via the chain rule,
if v ∈ TMp and γ satisfies γ′(0) = v, then for f : M → N some smooth function, we can
visualize dfp(v) as

dfp(v) = dfp(γ′(0))

= dfp
(

dγ0

(
∂

∂t

))
= d(f ◦ γ)0

(
∂

∂t

)
= (f ◦ γ)′(0).

PIC

§2.7 The Tangent Bundle
Suppose M is a smooth manifold and set

TM =
⊔
p∈M

TMp.

Sometimes we will write v ∈ TMp as (p, v). There is a natural projection

π : TM →M

(p, v) 7→ p

Example 2.7.1

For U ⊂ Rn,
TU =

⊔
p∈U

TRnp ∼= U × Rn.

Definition 2.7.2: Global differential

If f : M → N is smooth, set the global differential to be

df : TM → TN

(p, v) 7→ (f(p),dfp(v))
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Note that
d(g ◦ f) = dg ◦ df.

Theorem 2.7.3: Smooth structure on the tangent bundle

TM has a natural 2n-dimensional smooth structure (where n = dimM) such that
the projection π : TM → M is smooth. Moreover, if TM, TN are equipped with
their smooth structures and f : M → N is a smooth map, then df : TM → TN is
smooth.

Note, given f : M → N smooth, we can then consider the “second derivative"

ddf : T (TM)→ T (TN)

but this is very confusing.

Proof. Suppose φ : M ⊃ U → Û ⊂ Rn be a chart for M . Then we can use

dφ : TM ⊃ TU → T Û ∼= Û × Rn ⊂ R2n

as a chart for TM . If (ψ, V ) is another chart for M , we have

dψ ◦ dφ−1 : Tφ(U ∩ V )→ Tψ(U ∩ V )

but by the chain rule, this is just

d
(
ψ ◦ φ−1) ,

so in coordinates it is

d
(
ψ ◦ φ−1) (p, v) = (ψ ◦ φ−1(p),d

(
ψ ◦ φ−1)

p
(v))

= (ψ ◦ φ−1(p), J(ψ ◦ φ−1)p · v)

The J(ψ◦φ−1)p is a matrix of partials varying smoothly with p, since ψ◦φ−1 is smooth.
So dψ ◦ dφ−1 is smooth. The charts dφ for TM have open images in R2n, and any two
points of TM are either in the same chart or in disjoint charts, and countably many
of them cover TM . So by Lemma from before, they are charts in a unique smooth
structure.

With respect to these charts, we have

TM ⊃ TU TÛ ⊂ Rn × Rn

M ⊃ U Û ⊂ Rn

dφ

π p

φ

where p is the projection onto the first Rn, which is smooth. So π is smooth. And
similarly, given f : M → N , if (U, φ), (V, ψ) are charts around p, f(p), respectively,

TM ⊃ TU TN ⊂ TV

TÛ T V̂

df

dφ dψ

d(ψ◦fφ−1)

and since ψ ◦ fφ−1 is smooth, so is d
(
ψ ◦ fφ−1), this implies df is smooth. �
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§2.8 Vector Fields

Definition 2.8.1

A vector field onM is a map X : M → TM such that π ◦X = Id, i.e. X(p) ∈ TMp

for all p ∈M .

The smooth structure on TM allows one to say X is continuous or smooth, etc.
On Rn, vector fields have the form

p 7→ (p,X(p)), X(p) ∈ Rn

and we often write
X(p) =

n∑
i=1

ai(p)
∂

∂xi
.

There will be more on vector fields on the homework.



Chapter 3

Structures of Smooth
Manifolds

§3.1 Classes of Maps between Manifolds

Definition 3.1.1: Local diffeomorphism

A smooth map f : M → N is a local diffeomorphism at p if there exists open
neighborhoods U 3 p and V 3 f(p) such that

f
∣∣
U

: U → V

is a diffeomorphism.

Example 3.1.2

1. Diffeomorphisms are local diffeomorphisms. This is trivial, just take U = M
and V = N .

2. The inclusion i : U →M of an open subset, take U = U , V = i(U).

3. Smooth covering maps.

Note, if f is a local diffeomorphism at p, then dfp is an isomorphism. Since deriva-
tives of diffeomorphisms are isomorphisms by chain rule and only depend on f in a
neighborhoood of p. In fact, we have the converse:

Theorem 3.1.3: Inverse Function Theorem

If f : M → N is a smooth map such that dfp is an isomorphism, then f is a local
diffeomorphism at p.

Remark 3.1.4

1. Suffices to prove for Rn → Rn, by choosing charts.

2. For f : R → R, the Inverse Function Theorem says that if f ′(p) 6= 0 then
f is a local diffeomorphism at p. This is because a non-zero linear map
between one-dimensional vector spaces must necessarily be an isomorphism.

40
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Definition 3.1.5: Contraction

Suppose X is a metric space. A map g : X → X is a contraction if there exists
λ < 1 such that

d(g(x), g(y)) ≤ λd(x, y)

for all x, y ∈ X.

Lemma 3.1.6

Suppose X is a complete metric space. Then every contraction g : X → X has a
unique fixed point.

Proof of Lemma. Take x ∈ X. Then (we can show) the sequence {gi(x)} is
Cauchy. Hence gi(x) → p ∈ X as i → ∞. It follows that p has to be a fixed point
by continuity of g. Thus a fixed point exists.

If p, q are fixed points, and p 6= q, then

d(g(p), g(q)) = d(p, q) 6≤ λd(p, q).

A contradiction. �

3/10

Proof of Inverse Function Theorem. Suffices to prove for f : Rn → Rn, f(0) =
0, df0 = Id.

Set h(x) = f(x)−x, so dh0 = 0. Pick ε > 0 such that |dhp| < 1
2 for all p ∈ Bε(0) = B.

where the |dhp| is the Euclidean norm of Jacobian, i.e.√∑
i,j

a2
ij .

If x, y ∈ B, by Prop. C29 in Lee, we have

|h(x)− h(y)| < 1
2 |x− y|
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(an application of Mean Value Theorem essentially). But by triangle inequality and
definition of h,

|x− y| ≤ |f(x)− f(y)|+ |h(x)− h(y)|

≤ |f(x)− f(y)|+ 1
2 |x− y|

thus
1
2 |x− y| ≤ |f(x)− f(y)|.

This shows f is injective on B.
We claim that f(B) ⊃ Bε/2(0): If |y| < ε

2 , we want x ∈ B such that f(x) = y. Set

G(x) = −h(x) + y = x− f(x) + y.

So, f(x) = y if and only if G(x) = x. If |x| ≤ ε, we have

|G(x)| ≤ |h(x)|+ |y|

≤ 1
2 |x|+

ε

2
≤ ε.

Hence G sends the closed ball Bε(0) into itself. It is also a contraction since

|G(x)−G(x′)| = |h(x)− h(x′)| ≤ 1
2 |x− x

′|.

Applying Contraction Mapping Lemma, there exists x ∈ B such that f(x) = y.
So if we take

U = Bε(0) ∩ f−1(Bε/2(0))

then
f
∣∣
U

: U → Bε/2(0)

is a bijection. It is a homeo by

1
2 |x− y| ≤ |f(x)− f(y)|

which implies ∣∣f−1(x)− f−1(y)
∣∣ ≤ 2|x− y|.

You can check it is a diffeomorphism by showing directly that df−1 is the derivative of
f−1, from the definition. See Lee. �

Definition 3.1.7

If f : M → N is smooth, the rank of f at p is defined to be

dim im(dfp).

If f has the same rank r at every point, we say it has constant rank, and we write
rank f = r.
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[Rank of a Smooth Map] Note that, the rank of f at a point p is the rank of the
coordinate representation of f at the image of p in the chart.

Proposition 3.1.8: p 7→ rank of f at p is lower semi-continuous

Suppose f has rank ≥ r at p. Then there exists a neighborhood of p on which f
has rank ≥ r.

In other words, we claim that the map p 7→ rank f at p is lower semi continuous.

Proof. Suffices to take f : Rn → Rm. Then the condition rank dfp ≥ r is equivalent to
the statement that some r×r minor of Jfp is non-zero. Here, a minor is the determinant
of a square submatrix made by removing some of the rows and columns of Jfp. This is
an open condition on p, so rank dfq ≥ r in a neighborhood of p. Since this specific minor
of Jfp is a continuous function of p, it is non-zero in a neighborhood of p, implying f
has rank ≥ r in a neighborhood of p. �

Definition 3.1.9: Map of Full Rank

We notice that the rank of f at p is always at most min{dimM, dimN}. So if f
has full rank (at p) if the rank equals this minimum (at p).

Corollary 3.1.10: Full Rankness is Local

If f has full rank at p, it has full (and in particular constant) rank in a neighborhood
of p.
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Definition 3.1.11: Submersion and Immersion

We say the smooth map f : M → N is a submersion (at p) if rank = dimN at p.
We say f is an immersion (at p) if rank = dimM (at p).

Equivalently, f is a submersion at p if dfp is surjective; and f is an immersion
at p if dfp is injective.

Example 3.1.12

A linear map L : Rn → Rm is

1. an immersion if and only if it is injective.

2. a submersion if and only if it is surjective.

3. a diffeomorphism if and only if it is bijective.

These are all consequences of the fact that dLp = L for all p.

Example 3.1.13

1. If πM : M ×N → M , πM (p, q) = p is a submersion. In the usual charts for
M × N , πM is projection onto the first coordinate, so its derivative is also,
and hence has full rank.

2. π : TM →M , same reason.

3. γ : (a, b)→M is an immersion if and only if γ′(t) 6= 0 for all t.

Theorem 3.1.14: Constant Rank Theorem

Suppose f : M → N has constant rank r in a neighborhood of p. Then there exists
charts around p, f(p) in which f has a coordinate representation of the following
form:

(x1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0).

When f is a submersion at p (so also in a neighborhood of p), this becomes

(x1, . . . , xm) 7→ (x1, . . . , xn).

When f is an immersion at p, this becomes

(x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).

Exercise: If L : Rm → Rn is linear, show there exists isomorphisms A : Rm → Rm and
B : Rn → Rn such that BLA−1 has the form above:

BLA−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0)

where r = dimL(Rm) = rankL.

Proof. See Lee. �
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Definition 3.1.15

An immersion f : M → N is called an embedding if it is a homeomorphism onto
its image.

Example 3.1.16

1. The inclusion i : U ↪→M of an open subset of M is an embedding.

2. Sn ↪→ Rn+1 is a homeomorphism onto its image since the topology on Sn is
defined to be the subspace topology.
To show immersion, using the natural coordinates

φ+
i = projection onto the coordinate plane spaned by e1, . . . , êi, . . . , en+1

we get
i ◦ (φ±i )−1 : B1(0)→ Rn+1

is just (φ±i )−1 which has full rank since it is

(x1, . . . , xn) 7→ (x1, . . . , 1−
√∑

x2
i , x

i, . . . , xn)

essentially because we see all the xi’s in the image.

3. If f : M → N is smooth, then M →M ×N , p 7→ (p.f(p)) is an embedding

Example 3.1.17: Non-examples

1. γ : R → R2, γ(t) = (t3, 0) is a homeomorphism onto its image but is not an
immersion.

2. γ : R→ R2 as the following is not injective, so not an embedding.

3. γ : R→ R2 as the following is an injective immersion, but not a homeomor-
phism onto its image

Let T 2 = Z2
∖
R2 , π : R2 → T 2 the covering map, α ∈ R. Then

γα : R→ T 2

t 7→ π(t, αt)

PIC
This γα is the composition of an immersion t 7→ (t, αt) and a local diffeo-
morphism (covering), so it is an immersion.
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Is it an embedding? If α = p
q ∈ Q, then for all n ∈ Z,

γα(t+ qn) = π

(
t+ qn,

p

q
(t+ qn)

)
π(t+ qn,

p

q
t+ pn)

= π(t, p
q
t)

= γα(t)

So γα is periodic with period q, thus γα is not an embedding since it is not
injective. But it induces an embedding

S1 ∼= qZ
∖R → T 2.

If α /∈ Q, then α is injective since suppose

γα(t) = γα(s)

where t 6= s. Then
(t− s, α(t− s)) ∈ Z2

hence
α(t− s) ∈ Z

so α ∈ Q, a contradiction. But you can check that if α /∈ Q, its image is a
dense subset of T 2, so not an embedding (see Lee).

Example 3.1.18

The image of an embedding is called an embedded submanifold.

Remark 3.1.19: Smooth structure on embedded submanifold

Note: N ⊂M is an embedded submanifold if and only if it has a smooth structure
such that the inclusion i : N ↪→M is an immersion. The reverse direction is clear
since i is always a homeomorphism onto its image. In the forward direction, if
f : N → M is an embedding, we want to say f(N) has a smooth structure such
that the inclusion is an immersion. Idea is to use that f is a homeomorphism onto
its image to transfer the smooth strcuture of N onto its image: if φ : U → Û is a
chart for N , let

φ ◦ f−1 : f(U)→ Û

be a chart for f(N). This defines a smooth structure, and with respect to these
charts, the coordinate representation of i : f(N) → M is just the coordinate rep-
resentation of f , so i is an immersion since f was.

Theorem 3.1.20: Local Slice Criterion for Embedded Submanifolds

A subset N ⊂M is a k-dimensional embedded submanifold if and only if for each
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p ∈ N there exists an M -chart around p

φ : U → Û ⊂ Rm = Rk × Rm−k

considered as
φ = (φ1, φ2)

where φ1 maps into Rk and φ2 maps into Rm−k. Such that

N ∩ U = φ−1(Rk × φ2(p)).

This is called the local slice condition.

PIC

Proof. Forward direction: Around p, the Local Immersion Theorem implies that there
exists charts (U, φ) and (V, ψ) for N,M , respectively, sending p 7→ 0 and where

ψ ◦ i ◦ φ−1(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0) ∈ Rm = Rk × Rm−k.

Shrink the domains of φ, ψ so their images are exactly the ε-balls around 0, for some
small ε > 0. Then

i(U) = ψ−1(Rk × 0).

Moreover, since i is an embedding, there exists an openW ⊂M such thatW∩N = i(U),
since i(U) is open in N . The restriction

ψ
∣∣
V ∩W : V ∩W → Rk × Rm−k

then satisfies (
ψ
∣∣
V ∩W

)−1 (Rk × 0) = N ∩ (V ∩W )

as desired. �

Note: this Local Slice Condition is not true for the image of an immersion: PIC
figure eight

or, even an injective immersion, e.g. an irrational line on the torus T 2.

Example 3.1.21

Suppose f : Rn ⊃ U → Rm is smooth. Then the graph

Γ(f) = {(p, f(p) : p ∈ U} ⊂ Rn × Rm

satisfies the local slice condition, so is a submanifold of Rn ×Rm. This is because
given p ∈ U , set

φ : U × Rm → Rn × Rm

φ(p, q) = (p, q − f(p)).

This is a chart for Rn × Rm such that

Γ(f) = p−1(Rn × 0).

Note, any subset of Rn that is locally the graph (of a smooth ) of some coordinates
against the other is similarly an (embedded) submanifold, e.g. Sn ⊂ Rn+1.
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Definition 3.1.22: Properly embedded submanifold

A properly embedded submanifold is an embedded submanifold N ⊂ M such that
i : N → M is proper. Equivalently, that N is the image of a proper embedding.
Here, a map is proper if the preimages of compact sets are compact.

Example 3.1.23

1. Any compact submanifold, e.g. Sn ⊂ Rn+1. Because any continuous map
from a compact space to a Hausdorff space is proper.

2. (non-example) Take (0, 1) ⊂ R is not properly embedded since i−1([0, 1]) is
not compact.

Proposition 3.1.24

A submanifold S ⊂M is properly embedded if and only if S is closed in M .

Example 3.1.25

If M is a manifold with boundary, then the boundary ∂M ⊂ M is a properly
embedded submanifold. This is becauseM -charts all give the local slice condition,
and ∂M is a closed subset.

Theorem 3.1.26

Suppose f : M → N is smooth with constant rank r. Then each level set f−1(q),
q ∈ N , is a properly embedded submanifold of M with codimension r.

Here, if X ⊂M is a submanifold, then

codimX := dimM − dimX.

Proof. Around any point p ∈ f−1(q), the Constant Rank Theorem gives charts
(U, φ), (V, ψ) around p, f(p), respectively. Say with φ(p) = ψ(f(p)) = 0, such that

ψ ◦ f ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

But then φ is a local slice chart for f−1(q) ⊂M because

U ∩ f−1(q) = φ−1(0× Rm−r)

where 0×Rm−r is exactly what maps to 0 = ψ(q) under ψ ◦f ◦φ−1. And the dimension
of f−1(q) = r.

The properness follows from f continuous, thus the preimages of points are closed.
�
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Example 3.1.27: Constant rank maps

1. Any Lie homomorphism f : G → H (smooth homomorphism of Lie groups)
has constant rank: If g ∈ G,

G G

H H

f

Lg

f

Lf(g)

Then taking derivatives at the identity,

TGe G

THe THf(g)

dfe

dLg

dfg

dLf(g)

Hence dfe,dfg are maps with the same rank because the horizontal maps
are isomorphisms. This implies f has constasnt rank. So the kernel ker f =
f−1(e) of any Lie homomorphism is a properly embedded submanifold of the
domain.

2. SLnR ⊂ Mn×n is a properly embedded submanifold. GLnR ⊂ Mn×n is an
open submanidold.

det GLnR→ R 6=0

is a group homomorphism, soi has?? SLn R is a submanifold of GLnR, hence
of Mn×n.

Definition 3.1.28: Regular/critical point/value

Suppose f : M → N is smooth. Then p ∈M is a regular point if dfp is surjective,
i.e. f is a submersion of p. We call p a critical point otherwise. We call q ∈ N a
regular value if each p ∈ f−1(q) is a regular point; otherwise, we call q a critical
value.

Note, if q /∈ f(M), then q is a regular value.

Theorem 3.1.29

If f : M → N is smooth and q ∈ N is a regular value, then f−1(q) is a properly
embedded submanifold of M with codimension equal to the dimension of N .

Both the above Theorems imply that if f is a submersion, then each f−1(q) is a sub-
manifold.

Proof. Same as before, using Local Submersion Theorem (Constant Rank Theorem
applied to submersions). �
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Example 3.1.30

1. Sn ⊂ Rn+1 is a submanifold of codimension 1. We can realize

Sn = f−1(1)

where f : Rn+1 → R, f(x) = |x|2. And dfx = 0 exactly when x = 0, and
otherwise is surjective, so 1 is a regular value.

2. Set
O(n) = {A ∈Mn×n : ATA = I}

be the orthogonal group. If 〈, 〉 is the standard inner product (dot product)
on Rn, then

A ∈ O(n)⇔ 〈Av,Aw〉〈v, w〉
⇔ columns of A form an ONB for Rn

⇔ If {vi} is an ONB, so is {Avi}.

Claim: O(n) is a submanifold ofMn×n. We will realize O(n) as the preimage
of a regular value of some map. Set

S(n,R) = {A a symmetric n× n matrix, i.e. AT = A}

which is an n(n+1)
2 -dimensional manifold, since we can prescribe arbitrarily

all entries aij with i ≥ j, and then the others are determined, so S(n,R) ∼=
Rn(n+1)/2.
Define

Φ: GLnR→ S(n,R)
A 7→ ATA

We want to show
O(n) = Φ−1(I)

a submanifold, so we want to show I is a regular value: If A ∈ O(n), let
γ(t) = A+ tB where B ∈Mn×n. Then

dΦA(B) = (Φ ◦ γ)′(0)

= d
dt (A+ tB)T (A+ tB)

∣∣∣∣
t=0

= d
dtA

TA+ tBTA+ tATB + t2BTB

∣∣∣∣
t=0

= BTA+ATB.

Then

dΦA : T GLnRA ∼= Mn×n → S(n,R) ∼= TS(n,R)I
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is surjective, since if C ∈ S(m,R),

dΦA
(

1
2AC

)
=
(

1
2AC

)T
A+AT

1
2AC

= 1
2C

T (ATA) + 1
2C(ATA)

= 1
2C + 1

2C

= C.

§3.2 Sard’s Theorem

Problem 2. Rn comes equipped with the Lebesgue measure, which we denote by vol.
Does a manifold come with a “Lebesgue measure"?

However, there is a problem: transition maps may not preserve Lebesgue measure,
e.g. if f : Rn → Rn, f(x) = 2x is a diffeomorphism but vol(f(A)) = 2n vol(A) for all
measurable A, so vol is not preserved.

Lemma 3.2.1

uppose f : Rn ⊃ U → Rn is a smooth map and A ⊂ U has measure zero, then
vol(f(A)) = 0 as well.

Recall: A ⊂ Rn has measure zero if and only if for all δ > 0, there exists an open cover
{Ui} of A by open balls such that

∑
i vol(Ui) < δ.

Proof. It suffices to prove the Lemma when A is contained in a compact subset of
C ⊂ U (exhaust U by a sequence of compact subsets and use that countable unions of
measure zero sets are measure zero). In that case, there exists L > 0 such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ C (Consequence of entries of Jacobian being bounded on compact subset
C). Given δ > 0, pick a cover of A by balls Ui with∑

i

vol(Ui) <
δ

Ln
.

Then the sets f(Ui) cover f(A), and each is contained in a ball Vi of radius L (radius
of Ui). So

vol(Vi) ≤ Ln · vol(Ui)

hence
vol(f(A)) ≤ Ln ·

∑
i

vol(Ui) < δ.

Since δ > 0 is arbitrary, vol(f(A)) = 0. �
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Definition 3.2.2

If M is a smooth n-manifold, a subset A ⊂ M has measure zero if φ(A ∩ U) has
measure zero in Rn for all charts φ.

Equivalently, if every point p ∈ A is in the domain of a chart φ such that
φ(A ∩ U) has measure zero.

Here the equivalence if from the previous Lemma and the fact that unions of
countably many measure zero sets are measure zero.

Theorem 3.2.3: Sard’s Theorem

Suppose M,N are smooth manifolds, and F : M → N is smooth. Then the set
C ⊂ N of critical values of f has measure zero.

Recall: a critical point p ∈ M is a point where dfp is not surjective. A critical value
is the image of a critical point. It is not true that the set of critical points in M has
measure zero, e.g. if F is constant, then it is all of M .

Corollary 3.2.4

If F : M → N is smooth and dimM < dimN , then everything in the image is a
critical value, hence F (M) has measure zero. In particular, F is not surjective.

Remark 3.2.5

This Corollary is false for continuous maps, e.g. there exists surjective continuous
maps S1 → S2.

We will prove Sard for F : R→ R.

Sard’s Theorem for F : R→ R. Set

C = {critical values of f} ⊂ R,

and
CR = {f(x) : x ∈ [−R,R] a critical point of f}

so that
C =

∞⋃
R=1

CR.

Since this is a countable union, it suffices to show CR has measure zero. Since f ′ is
uniformly continuous on [−R,R], given ε > 0, there exists δ > 0 such that if

|a− b| < 2δ

where a is a critical point in [−R,R] (so f ′(a) = 0), we have

|f ′(b)| < ε.
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Now cover [−R,R] with ≤ 4R
δ number of δ-balls. For each y ∈ CR, pick a critical point

x ∈ [−R,R] with f(x) = y, and let B be one of the above δ-balls containing x. Then
|f ′| < ε on B, then f(B) is contained in a ball of radius ε · δ, by MVT. As y varies, these
f(B) cover CR. So we have

vol(CR) ≤
(

4R
δ

)
· 2εδ = 8Rε.

where 4P
δ is the number of possible B’s; and 2εδ is the volume of interval of radius εδ

containing f(B). As ε was arbitrary, vol(CR) = 0. �

§3.3 Application of Sard’s Theorem

Theorem 3.3.1: Whitney’s Embedding Theorem

If M is a smooth n-manifold, there exists a proper embedding M ↪→ R2n+1

Remark 3.3.2

1. We will only prove the theorem when M is compact. See Lee for the general
case.

2. Whitney later proved that M can be embedded in R2n He also proved M
can be immersed in R2n−1.

3. (Cohen) Any compact, smooth n-manifold can be immersed in R2n−a(n),
where a(n) is the number of 1’s in the binary expression of n.

Example 3.3.3

The Klein bottle has an immersion to R3. You can perturb this to an embedding
K ↪→ R4 by.

Proof. First, we show there exists an embedding M ↪→ RN for some N . Pick finitely
many charts (using compactness)

φi : U ′i → Rn, i = 1, . . . , k

such that there exists Ui with U i ⊂ U ′i such that the Ui’s cover M and there are smooth
functions ρi such that ρi ≡ 1 on ui and ρi supported in U ′i . Set

F : M → Rnk+k

x 7→ (ρ1(x)φ1(x), . . . , ρk(x)φk(x), ρ1(x), . . . , ρk(x))

Note that each of the ρi(x)φi(x) are in Rn, and each of the single ρi(x)’s are in R.
Here, we set ρi(x)φi(x) = 0 outside U ′i �

3/26
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Definition 3.3.4: Normal Space

If M ⊂ Rn is an m-dim embedded submanifold, then the normal space at p ∈ M
is

NMp = (TMp)⊥ ⊂ TRnp ∼= Rn

The normal bundle is
NM =

⊔
p

NMp ⊂ TRn

and we let
π : NM →M

be the natural projection
π(x, v) = x.

Theorem 3.3.5: Dimension of the Normal Bundle

NM is an n-dim submanifold of the tangent bundle TRn.

Proof. By the local slice condition for embedded submanifolds, choose slice coordinate
φ = (φ1, . . . , φn) in some U ⊂ Rn such that

M ∩ U = {x : φm+1(x) = · · · = φn(x) = 0}

Now set for each x ∈ U ,
ψx = (ψ1

x, ,̇ψ
n
x )

where
ψix(v) =

〈
∂

∂xi
|x, v

〉
coordinate system on TRnx �

3/29
Thinking of NM as a submanifold of Rn × Rn, we define E : NM → Rn by

E(x, v) = x+ v.

Definition 3.3.6: Tubular neighborhood

Given a positive continuous function δ : M → R, if the restriction of E to

Vδ = {(x, v) ∈ NM : |v| < δ(x)} ⊂ NM

is a diffeomorphism onto its image U ⊂ rn we call U a tubular neighborhood

Theorem 3.3.7

Every embedded submanifold M ⊂ Rn has a tubular neighborhood.
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Proof. Let
M0 = {(x, 0) : x ∈M} ⊂ NM

be the 0-section. Then M0 ⊂ NM is an n-dimensional submanifold (the charts from
the previous proof can be used as slice charts). Then E restricted to M0, E

∣∣
M0

is a
diffeomorphism onto M ⊂ Rn, so

dE(x,0)((TM0)(x,0)) = TMx.

We can view ((TM0)(x,0)) ⊂ T (NM)(x,0). Also, for fixed x ∈ M , NMx ⊂ NM is an
embedded submanifold

PIC
and

E
∣∣
NMx

(x, v) = x+ v

where x is fixed, so
dE(T (NMx)(x,0)) = NMx ⊂ TRnx .

We can view T (NMx)(x,0) ⊂ TNM(x,0). So the image of dE contains

TMx +NMx = TRnx .

This implies dE is an isomorphism at (x, 0) ∈ NM , since NM,Rn both have dimen-
sion n. So, IFT implies E is a diffeomorphism onto its image when restricted to a
neighborhood

Vδ(x) = {(x′, v′) ∈ NM : |x′ − x| < δ, |v′| < δ} ⊂ NM

for small δ. Let δ(x) be the supremum of all such δ. Then

δ : M → R

is positive, and it is continuous, by triangle inequality (check). Set

V = {(x, v) : |v| < 1
2δ(x)}.

We want to show E
∣∣
V

is a diffeomorphism onto its image. We know it is a local diffeo-
morphism, hence it suffices to show that E

∣∣
V

is injective. If (x, v), (x′, v′) ∈ V and

x+ v = x′ + v′

then

|x− x′| = |x− v′|
≤ |v|+ |v′|

≤ 1
2δ(x) + 1

2δ(x
′)

≤ δ(x) WOLOG assume δ(x) is bigger

This is a contradiction, since then

(x, v), (x′v′) ∈ Vδ(x)(x)

map to the same thing, while E is supposed to be diffeo there (we used |x− x′| < δ(x)
as above; and |v|, |v′| < 1

2δ(x) < δ(x) by defginition of V ). �
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Proposition 3.3.8

If U ⊃ M ⊂ Rn is a tubular neighborhood of M , then there exists a submersion
r : U →M that is a deformation retraction.

Proof. St U E−1,∼=−−−−→ V ⊂ NM π−→M , and let

r = π ◦ E−1.

This is a submersion. It is a deformation retract since r = Id on M ⊂ U , and the maps

U
E−1

−−−→ V
(x,v)7→(x,tv)−−−−−−−−→ V

E−→ U

and let rt be this composition. This gives a homotopy through U from r1 = Id to
r0 = r. �

Theorem 3.3.9

Suppose M,N are smooth manifolds, f : M → N is a continuous map. Then f is
homotopic to a smooth map g.

Lemma 3.3.10

If f : M → Rn and ε : M → R>0 are continuous, there exists a smooth g : M → Rn
with

|f(x)− g(x)| < ε(x)

for all x ∈M .

Proof of Theorem. ByWhitney Embedding, we may assumeN ⊂ Rn. Let U ⊃ N
be a tubular neighborhood, and pick ε : N → R>0 such that B(y, ε(y)) ⊂ U for all y ∈ N .
By the Lemma, there exists a smooth

h : M → Rn

where
|f(x)− h(x)| < ε(f(x)).

(the ε(x) in the Lemma is ε(f(x)) here)
Note, if x ∈M , then h(x) ∈ U by the definition of ε.
PIC
Set

g = r ◦ h : M → N

where r : U → N is the submersion from the previous Proposition. Then g : M → N is
smooth and

gt(x) = r((1− t)f(x) + th(x)U︸ ︷︷ ︸
∈U

).

This is a homotopy from g = g1 to f = g0. �

3/31
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§3.4 Vector Bundles

Definition 3.4.1: Vector bundle

If M is a smooth manifold, a vector bundle of rank k over M is a continuous map
π : E →M such that:

1. For each p ∈M , the fiber Ep = π−1(p) has the structure of a k-dimensional
real vector space.

2. For each p ∈M , there exists a neighborhood U ⊂M of p, and a homeomor-
phism

φ : π−1(U)→ U × Rk

such that πU ◦ φ = π where πU : U ×Rk → U is the projection (such φ’s are
called local trivializations); and for each q ∈ U , the restriction

φq : Eq → {q} × Rk ∼= Rk

is a linear isomorphism.

If E and π are smooth, and the φ can be taken to be diffeomorphisms, we say
π : E →M is a smooth vector bundle.

We call E the total space, M the base space, and π the projection.

Example 3.4.2

1. Take M × Rk → M is a smooth rank k vector bundle, which is trivial. We
can use the identity map as a “local trivialization", which is really global.

2. (Tangent bundle) Let π : TM → M , then this is a rank n vector bundle,
where n = dimM . If

φ : U → Û ⊂ Rn

is a chart, then

π−1(U) ∼= TU
dφ,∼=−−−→ TÛ ∼= Û ∼= Rn φ−1×Id−−−−−→ U × Rn

(p, v) 7→ (p,dφp(v))

is a local trivialization.

3. (Normal bundle) Exercise. Use the slice charts we constructed for NM ⊂
TRn to give local trivializations for NM →M , where m ⊂ Rn.

4. (Mobius bundle) Let Z act on R2, given by n(x, y) = (x+ n, (−1)ny). Then
set

M := Z
∖
R2

one can verify this is the open Mobius band. We can see the fundamnetal
domain as
PIC
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The projection πR(x, y) = x factors as

R2 Z
∖
R2 =: M

R Z
∖R =: S1

πM

πR ρ

πS1

PIC
This ρ is a rank 1 vector bundle. For a local trivilization, set U = πS1(0, 1)
and set

φ : U × R→ ρ−1(U)

by setting
φ(p, y) = πM ((πS1

∣∣
(0,1))

−1(p), y)

PIC This φ is a diffeo, and we can construct another such that

ψ : V = πS1

(
1
2 ,

3
2

)
× R→ ρ−1(V )

using the analogous formula. We want a vector space structure on each Mq,
q ∈ S1 such that φ, ψ give isomorphisms R→Mq. The “transition map" is

(0, 1) \ 1
2 × R→ ρ−1(U ∩ V )← (1/2, 3/2) \ 1× R

which is ψ−1 ◦ φ

(x, y) 7→
{

(x, y) x > 1
2

(x+ 1,−y) x < 1
2

(check). So we can now equip each fiberMq = ρ−1(q) with the unique vector
space structure with respect to both φ, ψ are local trivilizations. On each
fiber in the overlap, the transition map above is either y 7→ y or y 7→ −y,
which are both linear isomorphisms of R, so the same vector space structure
works.

4/5
Supppose π : E →M is a smooth vector bundle and we have local trivializations

φα : π−1(Uα)→ Uα × Rk

and
φβ : π−1(Uβ)→ Uβ × Rk

Then
φβ ◦ φ−1

α : (Uα ∩ Uβ)× Rk → (Uα ∩ Uβ)× Rk

has the form
φβ ◦ φ−1

α (p, v) = (p, τ(p)v)
where τ(p) ∈ GLk(R). In other words, for each fixed p,

φβ ◦ φ−1
α

∣∣
p×Rk

is a linear isomorphism, hence is given by multiplication by an invertible matrix. Here

ταβ : Uα × Uβ → GLk R
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is smooth, which is immediate from the fact that local trivializations are smooth (diffeo).
These ταβ ’s are called transition functions.

Lemma 3.4.3: Vector Bundle Chart Lemma

Suppose M is a smooth manifold and for each p ∈ M , we have a k-dim vector
space Ep. Let E = tpEp, let π : E → M be the obvious map, and suppose we
have a cover {Uα} of M and for each α we have a bijection

φα : π−1(Uα)→ Uα × Rk

that is a linear isomorphism on every fiber, i.e.

φα
∣∣
Ep
Ep → p× Rk

is an isomorphism, and where for each pair α, β, we have

φβ ◦ φ−1
α : Uα ∩ Uβ × Rk → Uα ∩ Uβ × Rk

(p, v) 7→ (p, ταβ(p)v)

for some smooth
ταβ : Uα ∩ Uβ → GLk R.

Then there exists a unique smooth structure on E that makes π : E → M into a
smooth vector bundle where the φα’s are local trivializations.

Proof. See Lee. �

Example 3.4.4: Whitney sums

Suppose πE : E →M , πE′ : E′ →M are vector bundles of rank k, k′, respectively.
Set

πF : F →M

to be the union
F = tpEp ⊕ E′p

with πp the obvious projection. If

φ : π−1
E (U)→ U × Rk, φ = (πE , φ2)

φ′ : π−1
E′ (U ′)→ U ′ × Rk, φ′ = (πE′ , φ′2)

then we set

φ⊕ φ′ : π−1
F (U ∩ U ′)→ π−1

F (U ∩ U ′)
(p, v + w) 7→ (p, φ2(p, v) + φ′2(p, w))

If ταβ is the transition function from φα to φβ , and τ ′αβ is the transition function
from φ′α to φ′β , then the transition function from φα ⊕ φ′α to φβ ⊕ φ′β is

p 7→
(
ταβ(p) 0

0 τ ′αβ(p)

)
∈ GLk+k′ R
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So there exists unique smooth structure on E ⊕ E′ := F making it into a vector
bundle.

Example 3.4.5

Let π : E →M be a vector bundle, let S ⊂M be some submanifold. Then we can
make a vector bundle

πS : E
∣∣
S
→ S(

E
∣∣
S

)
p

:= Ep

where we can take restrictions of local trivilizations for E as local trivilizations for
E
∣∣
S
.

Definition 3.4.6: Section of a vector bundle

A section of a vector bundle π : E →M is a map σ : M → E such that π ◦ σ = Id.
So σ(p) ∈ Ep for all p. We will assmu all sections are continuous, and offen we will
consider smooth sections.

A local section over an open set U ⊂M is a section of E
∣∣
U
, i.e. a map σ : u→ E

with π ◦ σ = Id.

Example 3.4.7

1. The zero section ζ : M → E, ζ(p) = (p, 0) ∈ Ep.

2. Sections of TM →M are vector fields.

3. Sections of M × Rk →M are essentially functions M → Rk.

Definition 3.4.8: Local frame

Let π : E →M be a rank k vector bundle. A local frame over U ⊂M is a tuple

(σ1, . . . , σk)

of local sections over U such that for all p,

{(σ1(p), . . . , σk(p))}

is a basis for Ep. It is a global frame if U = M .

Local frames are “the same as" local trivializations: If φ : π−1(U)→ U ×Rk is
a local trivialization, we can let, for p ∈ U ,

σi(p) = φ−1(p, ei)

where ei is the ith standard basis vector, and then the σ1, . . . , σk give a local fram over
U .
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Conversely, if (σ1, . . . , σk) is a local frame over u, the map

π−1(U)→ U × Rk(
p,
∑
i

aiσi(p)
)
7→ (p, a1, . . . , ak)

is a local trivialization.
4/7

Example 3.4.9

If φ : U → Û ⊂ Rn is a chart for M then the vector fields

∂

∂x1 ,
∂

∂x2 , . . . ,
∂

∂xn

form a local frame for TM over U

Definition 3.4.10: Bundle homomorphism over a common base

Let π : E → M and π′ : E′ → M be smooth vector bundles over M . A smooth
bundle homomorphism over M is a smooth map F : E → E′ such that

E E′

M

F

π π′

commutes, i.e. F (Ep) ⊂ E′p, and where

Fp := F
∣∣
Ep

: Ep → E′p

is linear.
We say F is an isomorphism if it is also a diffeomorphism, in which case each

Fp is a linear isomorphism (because it is a bijection).

Definition 3.4.11: Trivial bundle

We say a bundle π : E → M is trivial if it is a isomorphic to a product bundle
M × Rk.

Note, a local trivilization
φ : π−1(U)→ U × Rk

is a bundle isomorphism from the restricted bundle E
∣∣
U

to U × Rk, hence the name
local trivialization.

In particular, a bundle E →M is trivial if and only if there exists a global frame.

Example 3.4.12

The Mobius bundle M → S1 is not trivial because it admits no non-vanishing
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section, and hence has no global frame. Here a non-vanishing section is a σ : S1 →
M , σ(p) 6= 0 ∈Mp for all p.

PIC
Any section of M gives a function f : [0, 1] → R such that f(0) = −f(1). By

the Intermediate Value Theorem, such a function must vanish somewhere.

Example 3.4.13

Suppose π : E →M and π′ : E′ →M ′ are bundles, then the projection

E ⊕ E′ → E

is a bundle homomorphism over M .

Definition 3.4.14: Bundle homomorphism, general

If π : E →M , and π′ : E′ →M ′ are bundles over different spaces, and f : M →M ′

is smooth, a smooth bundle homomorphism over f is a smooth map F : E → E′

such that the following diagram

E E′

M M ′

F

π π′

f

commutes; and where
Fp := F

∣∣
Ep

: Ep → E′f(p)

is linear for all p.

Example 3.4.15

If f : M → M ′ is smooth, then df : TM → TM ′ is a bundle homomorphism over
f .

Case Study: Suppose π : E →M is a vector bundle, we can define π∗ : E∗ →M to
be the dual bundle, where

(E∗)p = (Ep)∗ := {linear f : Ep → R}

Here, if e1, . . . , en is a local frame for E, then e∗1, . . . , e∗n is a local frame for E∗, where
the e∗i ’s are defined by

e∗i (ej) = δij .

As an exercise, one can show that the associated local trivializations for E∗ have
transition functions of the form

τ∗(p) = (τ(p)−1)T

hence are smooth maps into GLnR.
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Definition 3.4.16: Cotangent bundle

The dual T ∗M = (TM)∗ is called the cotangent bundle.

If f : M → R is smooth, then the map

p 7→ (dfp : TMp → TRf(p) = R) ∈ T ∗Mp

is a smooth section of the cotangent bundle T ∗M , i.e. a covector field or a 1-form. If
we pick local coordinates (x1, . . . , xn) on U ⊂M ,

dxip

(
∂

∂xj

∣∣∣∣
p

)
= δij for all p

so dx1, . . . ,dxn is the dual local frame to ∂
∂x1 , . . . ,

∂
∂xn .

Hence, any 1-form, i.e. smooth section of T ∗M can be written as

ω =
∑
i

aidxi

where smoothness of ω is equivalent to the smoothness of the coordinate functions ai.
For instance,

df =
∑
i

∂f

∂xi
dxi.

The ∂f
∂xi ’s are partials of the coordinate representation, or one can regard as df

(
∂
∂xi

)
.



Chapter 4

Towards a Cohomology
Theory for Smooth Manifolds

Goal for the rest of the course: We will construct a chain complex

0→ C∞(M)︸ ︷︷ ︸
“0-forms"

d−→ {1-forms}︸ ︷︷ ︸
sections of T∗M

d−→ {2-forms}︸ ︷︷ ︸
sections of some other bundle

d−→ . . .

and a related DeRham cohomology theory,

Hk
dR(M) = ker d

∣∣
{k-forms}

/
im d

∣∣
{(k−1)-forms}

where Hk
dR(M) will be a real vector space.

For instance,

H0
dR(M) = ker[d : C∞(M)→ {1-forms}]

= {locally constant functions f : M → R}
∼= R#components,

which is the same as H0(M ;R) or H0(M ;R), the singular (co)homology spaces.

§4.1 Linear Algebra and Tensors

Definition 4.1.1: Multilinear function

If V is a vector space, a function

T : V × · · · × V︸ ︷︷ ︸
k times

→ R

is multilinear if it is linear in each coordinate, i.e.

T (v1, . . . , αvi + βwi, . . . , vk) = αT (v1, . . . , vi, . . . , vk) + βT (v1, . . . , wi, . . . , vn)

for all α, β, vj ’s, and wi’s.
We denote

T k(V ) := {multilinear functions V k → R}.

Example 4.1.2

1. If k = 1, then multilinear means linear, so T 1(V ) = V ∗.

64
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2. If φ1, . . . , φk ∈ V ∗, we can define the multilinear function

φ1 ⊗ · · · ⊗ φk : V × · · · × V → R

defined by
φ1 ⊗ · · · ⊗ φk(v1, . . . , vk) := φ1(v1) · · ·φk(vk).

We call this map φ1⊗ · · ·⊗φk the tensor product of φ1, . . . , φk. With this in
mind, we often call elements of T k(V ) (contravariant) k-tensors. Remark:
In the more abstract language,

T k(V ) ∼= V ∗ ⊗ · · · ⊗ V ∗,

and Lee calls it T k(V ∗) instead of T k(V ).

Note that T k(V ) is a vector space because we can scale and add multilinear functions.

Theorem 4.1.3: A Basis for T k(V )

Let V be an n-dim vector space. Suppose φ1, . . . , φn is a basis for the dual space
V ∗. Then

{φi1 ⊗ · · · ⊗ φik : i1, . . . , ik ∈ {1, . . . , n}}

is a basis for T k(V ). Hence,

dimT k(V ) = nk.

Proof. Let e1, . . . , en be the basis for V dual to φ1, . . . , φn; i.e. φi(ej) = δij .
For linear independence, it suffices to show no φi1 ⊗ · · · ⊗ φik is in the span of the

others. To that end, we notice that

φi1 ⊗ · · · ⊗ φik (ei1 , . . . , eik ) = 1 · · · 1 = 1

but any other of the proposed basis elements gives 0 on ei1 , . . . , eik . Evaluation on
(ei1 , . . . , eik ) is a linear map T k(V ) → R, and it is non-zero exactly on the element
φi1 ⊗ · · · ⊗ φik (among the proposed basis vectors), this shows thatφi1 ⊗ · · · ⊗ φik is not
in the span of the other proposed elements.

Now for span of the whole space. Given an element f ∈ T k(V ), i.e. a multilinear
function f : V k → R, we claim that

f =
∑
tuples

(i1,...,ik)

f(ei1 , . . . , eik )φi1 ⊗ · · · ⊗ φik .

Indeed, both sides give the same output when applied to (ei1 , . . . , eik ); combining this
with multilinearity implies both sides give the same output on all (v1, . . . , vk). �

Definition 4.1.4: Tensor Product of Two Multilinear Functions

If T ∈ T k(V ), and S ∈ T `(V ), then we can define the tensor product of T and S,
which is a (k + `)-multilinear map

T ⊗ S ∈ T k+`(V )
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defined by
T ⊗ S(v1, . . . , vk+`) := T (v1, . . . , vk)S(vk+1, . . . , v`).

This turns the sum of all the T k(V ), k ≥ 1, i.e.
⋃∞
k=1 T

k(V ) into an object called the
tensor algebra, in which you can sum multilinear maps using the vector space structure
and multiply using the tensor product.

Definition 4.1.5: Alternating Multilinear Function

An element T ∈ T k(V ) is alternating if

T (v1, . . . , vi, . . . , vj , . . . , vk) = −T (v1, . . . , vj , . . . , vi, . . . , vk)

for all v1, . . . , vk ∈ V .

Theorem 4.1.6: Characterization of Alternating Multilinear Functions

Let T ∈ T k(V ). The following are equivalent:

1. T is alternating.

2. T (v1, . . . , vk) = 0 if vi = vj for some i 6= j.

3. If a ∈ Sk (the symmetric group on k letters) acts on V k by permuting the
entries, then

T ◦ σ = sgn(σ)T

for any σ ∈ Sk.

Recall that the sign sgn(σ) of a permutation σ is defined to be sgn(σ) := (−1)s where s is
the number of transpositions when we write σ = σ1 · · ·σs, each σi being a transposition.

Definition 4.1.7: The Set of Alternating k-Multilinear Functions, Wedge-k of V

We denote the set of all alternating k-multilinear functions/alternating k-tensors
to be

Λk(V )

We call this Wedge-k of V

Example 4.1.8

• 1-tensors are all alternating, so
∧1(V ) = T 1(V ) = V ∗.

• R2 → R, (x, y) 7→ xy is a non-alternating 2-tensor, while

(x, y) 7→ 0

is alternating.



CHAPTER 4. TOWARDS A COHOMOLOGY THEORY FOR SMOOTH MANIFOLDS67

Proposition 4.1.9

A k-tensor T is alternating if and only if T (v1, . . . , vk) = 0 whenever v1, . . . , vk are
linearly dependent.

Proof. First we assume that T is such that T (v1, . . . , vk) = 0 whenever v1, . . . , vn is
linearly dependent. We want to show T is alternating, which by the above Theorem, it
suffices to whot that T (v1, . . . , vk) = 0 whenever vi = vj for some i 6= j. But his follows
immediately from the fact that if vi = vj then the input set is linearly dependent, hence
by the assumption, T (v1, . . . , vn) = 0. So T is alternating.

Conversely, suppose T is alternating. Suppose we have v1, . . . , vk is a linearly de-
pendent set. Then some vi is a linear combination of the others, write it that way and
expand using biliearity. All terms then have a repeated input, giving zero. �

Corollary 4.1.10

Λk(V ) = 0 if k > n = dimV

Proof. If k > n, then there is no linearly independent set v1, . . . , vk of k vectors, so T
always outputs zero. �

Definition 4.1.11: Elementary Alternating k-Tensors

Fix a basis {e1, . . . , en} for V and let {ε1, . . . , εn} be the dual basis for V ∗. For
each k-multi-index

I = (i1, . . . , ik) ∈ {1, . . . , n}

set

εI(v1, . . . , vk) = det

ε
i1(v1) . . . εi1(vk)
...

...
εik (v1) . . . εik (vk)


These are called elementary alternating k-tensors.

Observe that εI is an alternating k-tensor, hence εI ∈ Λk(V ).
When I = {1, . . . , n}, εI is just the determinant map:

(v1, . . . , vn) 7→ det(v1, . . . , vn)

where we view the vi’s on the RHS as column coordinate vectors w.r.t. the ei basis.
We say the k-multi-index I = (i1, . . . , ik) is increasing if i1 < i2 < · · · < ik.

Proposition 4.1.12

For a k-multi-index J = (j1, . . . , jk), where each ji ∈ {1, . . . , n}, set

eJ := (ej1 , . . . , ejk
).

Then if we have k-multi-indices I = (i1, . . . , ik), J = (j1, . . . , jk), where both are
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increasing, then

εI(eJ) =
{

1 I = J

0 otherwise

Proof. If I = J , then
εI(eJ) = det(Id) = 1.

Otherwise, since both are increasing and length k, there is an index of J that is not an
index of I, giving a zero column in our matrix, hence εI(eJ) = 0. �

Theorem 4.1.13: A Basis for Alternating k-Tensors

The set of alternating elementary k-tensors with increasing index:

{εI : I increasing, length k}

is a basis for Λk(V ).

Proof. Linear independence follows from the previous Proposition: suppose by way
of contradiction that some εI in the set is the linear combination of some other ones,
i.e. we can write

εI =
∑
j

ajε
Ij

where all the Ij ’s 6= I. Then plugging eI into both sides give 1 = 0, a contradiction.
For span, suppose α ∈ Λk(V ), then we observe that

α =
∑

increasing I
α(eI)εI .

Indeed, both sides are alternating, and evaluate to the same thing on all eJ ’s, where
J increasing, and hence on all eJ ’s (not necessarily increasing. This follows from both
sides being alternating). Hence on all V k by bilinearity. �

Corollary 4.1.14

1. dim Λk(V ) =
(
n
k

)
.

2. Λn(V ) ∼= R, spanned by the single element εI , where I = {1, . . . , n}, i.e. the
map

(v1, . . . , vn) 7→ det(v1, . . . , vn).

Remark 4.1.15: Determinant is the Unique Alternating Multilinear Map

It follows from this Corollary that the determinant is the unique function from the
set of n × n matrices Mn×n to R that is alternating, multilinear in the columns,
and satisfies det Id = 1. Indeed, any function that is alternating and multilinear
must be some constant multiple of the determinant function, and hence there is
only one that satisfies det Id = 1.
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The pullback of an alternating k-tensor Suppose L : V → W is a linear map
between vector spaces. Then there is an induced linear map

L∗ : Λk(W )→ Λk(V )

called the pullback, defined by

L∗(T )(v1, . . . , vk) := T (L(v1), . . . , L(vk)).

In the special case where the linear map is L : V → V , and say n = dim(V ), we have

L∗ : Λn(V ) ∼= R→ R ∼= Λn(V )

is a linear map from R to R, hence must be multiplication by a scalar. What is this
scalar?

Choosing coordinates, and regarding the the following vi’s as column vectors, we
have

L∗ det(v1, . . . , vn) = det(L(v1), . . . , L(vn))
= det(L · (v1, . . . , vn)) (here we regard L as a matrix)
= det(L) · det(v1, . . . , vn).

Hence we see that the scalar is det(L).

Definition 4.1.16: Alt(T )

Suppose T ∈ T k(V ), we define

Alt(T ) := 1
k!
∑
σ∈Sk

sgn(σ)T ◦ σ.

Example 4.1.17

1. For T ∈ T 1(V ), we have Alt(T ) = T .

2. For T ∈ T 2(V ), we have

Alt(T )(v, w) = 1
2(T (v, w)− T (w, v)).

Proposition 4.1.18

1. Alt(T ) is alternating.

2. If T is alternating, then Alt(T ) = T .

Proof. 1. Suppose τ is a transposition, then

Alt(T ) ◦ τ = 1
k!
∑
σ∈Sk

sgn(σ)T ◦ σ ◦ τ

= 1
k!
∑
σ∈Sk

− sgn(σ ◦ τ)T ◦ σ ◦ τ

= −Alt(T ) reindexing
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2. Homework.
�

This Proposition shows that we get a inear projection

Alt : T k(V )→ Λk(V ).

Definition 4.1.19: Wedge Product

Suppose ω ∈ Λk(V ), η ∈ Λ`(V ), define the wedge product of ω and η to be

ω ∧ η = (k + `)!
k!`! Alt(ω ⊗ η) ∈ Λk+`(V ).

Recall that the tensor product is defined to be

ω ⊗ η(v1, . . . , vk+`) = ω(v1, . . . , vk) · η(vk+1, . . . , vk+`)

This defines a bilinear map

∧ : Λk(V )× Λ`(V )→ Λk+`(V ).

Proposition 4.1.20

If ε1, . . . , εn is a basis for V ∗, dual to e1, . . . , en ∈ V . Then

εI ∧ εJ = εIJ

where IJ is the multi-index that is the concatenation of I and J .
Recall here that if we have the k-multi-index I = (i1, . . . , ik), then we define

εI(v1, . . . , vk) = det

ε
i1(v1) . . . εi1(vk)
... . . . ...

εik (v1) . . . εik (vk)


Proof. Let P = (p1, . . . , pk+`) be a (k + `)-multi-index. Apply both sides to

eP = (ep1 , . . . , epk+`
).

If P contains a repeated index or an index not in either I or J , then both sides of the
equation give 0 when applied to eP . Hence, it suffices to take P = IJ , since we know
how alternating k-tensors behave under permutation. We have

εI ∧ εJ(eIJ) = (k + `)!
k!`! Alt(εI ⊗ εJ)(eIJ)

= (k + `)!
k!`!

1
(k + `)!

∑
σinSk+`

sgn(σ)(εI ⊗ εJ) ◦ σ(eIJ)

= 1
k!`!

∑
σ∈Sk+`

sgn(σ)εI(eσ(I))εJ(eσ(J))...

�
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Proposition 4.1.21

The operation
∧ : Λk(V )× Λ`(V )→ Λk+`(V )

is

1. Bilinear.

2. Associative: (ω ∧ η) ∧ ζ = ω ∧ (η ∧ ζ).

3. Anticommutative: if ω ∈ Λk, η ∈ Λ`, then

ω ∧ η = (−1)k`η ∧ ω.

4. If I = (i1, . . . , ik) then
εI = εi1 ∧ · · · ∧ εik .

5. If ω1, . . . , ωk ∈ V ∗, then

ω1 ∧ · · · ∧ ωk(v1, . . . , vk) = det
(
ωj(vi)

)
where ωj(vi) is the i, j-th entry of this k × k matrix.

Proof. �

Remark 4.1.22

Λ(V ) =
n⊕
k=0

Λk(V )

is called the exterior algebra of V . It is a graded associative algebra, in the sense
that it is a vector space with a multiplication ∧ that respects the “grading", i.e.

Λk ∧ Λ` ⊂ Λk+`.

Hence, we define Λ0(V ) := R, and if c ∈ R, then

c ∧ ω := cω.

Note also that if L : V →W is a linear map, we get an induced map

Λ(W )→ Λ(V )

and
L∗(ω ∧ η) = L∗

(
(k + `)!
k!`! Alt(ω ⊗ η)

)
= L∗ω ∧ L∗η

that is, L∗ is a map of algebras.
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§4.2 Differential Forms
Let M be a smooth manifold. Set

Λk(TM) :=
⊔
p

Λk(TMp)

Now we shall give Λk(TM) a smooth vector bundle structure (over M). Pick a chart
with local coordinates (x1, . . . , xn) for M, and use

{dxI : I an increasing k-multiindex}

as a local frame for Λk(TM). Here, if we have the multiindex I = (i1, . . . , ik), then

dxI = dxi1 ∧ · · · ∧ dxik .

Recall here that dxi is the dual to the basis element xi, or ∂
∂xi .

Note that the dxi form a basis for (TMp)∗ at every p (these are the εi’s), hence their
wedges (i.e. the eI = ei1 ∧ · · · ∧ eik for I increasing) give a basis for Λk(TMp) at every
p (see the Theorem on Basis for Alternating k-tensors).

Small example: Λ1(TM) = T ∗M .

Definition 4.2.1: Differential form

A smooth global section of Λk(TM) is called a (smooth) k-form. We denote the
set of all k-forms on M to be Ωk(M).

Differential form in local coordinates In local coordinates, a k-form ω can be
written as

ω =
∑

I increasing multiindex
ωIdxI =

∑
I

′
ωIdxi1 ∧ · · · ∧ dxik .

where the ωI ’s are smooth functions.

Definition 4.2.2: Wedge product of forms

We can define
∧ : Ωk(M)× Ω`(M)→ Ωk+`(M)

pointwise. That is, we have

(ω ∧ η)p(v) = (ωp ∧ ηp)(v)

Definition 4.2.3: Pullback of forms

Suppose F : M → N is a smooth map between smooth manifolds. Let ω ∈ Ωk(N),
we can define the pullback of ω along F : F ∗(ω) ∈ Ωk(M), which is a k-form on
M . It is defined by the following:

(F ∗ω)p(v1, . . . , vk) = ωF (p)(dFp(v1), . . . ,dFp(vk)).

Here are some facts about the pullback (Lemma 14.16 in Lee):
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1. F ∗ ω is smooth, and ω 7→ F ∗ω is R-linear.

2. F ∗(ω ∧ η) = F ∗ω ∧ F ∗η. This is true because it is true pointwise(?).

3. In any smooth chart,

F ∗

(∑
I

′
ωIdyi1 ∧ · · · ∧ dyik

)
=
∑
I

′
(ωI ◦ F ) d

(
yi1 ◦ F

)
∧ · · · ∧ d

(
yik ◦ F

)
.

Example 4.2.4

Set F (r, θ) = (r cos θ, r sin θ), and let ω = dx ∧ dy, which is a 2-form on R2.

F ∗dx ∧ dy = d(r cos θ) ∧ d(r sin θ)
= (cos θdr − r sin θdθ) ∧ (sin θdr + r cos θdθ)
= (cos2 θ · r + sin2 θ · r)dr ∧ dθ
= rdr ∧ dθ.

In the computation above,

JF =
(

cos θ −r sin θ
sin θ r cos θ

)
so

(cos2 θ · r + sin2 θ · r) = det JF.

In general, if F : U → V , where both U, V ⊂ Rn, and ω = adx1 ∧ · · · ∧ dxn is an
n-form on V , then

(f∗ωp = (dfp)∗ωf(p) = (detJfp) · a(f(p))dx1 ∧ · · · ∧ dxn)

by our earlier formula for pullbacks on
∧n(V ) by linear L : V → V .

Proposition 4.2.5: Pullback of top degree forms

§4.3 Exterior Derivative
Exterior derivative on Rn If ω =

∑′
I ωIdxI is a k-form on Rn, define the (k + 1)-

form
dω :=

∑
I

′
dωI ∧ dxI .

For example:

1. When ω is a 0-form, i.e. a smooth function, then dω is as before,

dω =
∑
i

∂ωi
∂xi

dxi.
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2. If ω is a 1-form, then

dω = d
(∑

i

ωidxi
)

=
∑
i

dωi ∧ dxi

=
∑
i

∑
j

∂ωi
∂xj

dxj
 ∧ dxi

=
∑
i<j

(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi ∧ dxj .

For instance, if ω is the derivative of some function,

ω = df =
∑
i

∂f

∂xi
dxi,

then

dω = dfdf

=
∑

= 0 by Clairault’s Thm.

Proposition 4.3.1

1. d is linear over R.

2. d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

3. d ◦ d ≡ 0.

4. If F : U → V ⊂ Rn, ω a smooth k-form on V , then

F ∗(dω) = dF ∗ω.

Proof. For 2., Suffices to take ω = udxI , η = vdxJ . Then

d(ω ∧ η) = d
(
uvdxI ∧ dxJ

)
= (vdu+ udv) ∧ dxI ∧ dxJ

= (du ∧ dxI) ∧ vdxJ + (−1)kudxI ∧ (dv ∧ dxJ)

Exercise: Show that for any multiindex I, d
(
adxI

)
= da ∧ dxI , not just for increasing

I. �

Exterior derivative on smooth manifolds

Theorem 4.3.2

Suppose M is a smooth manifold. Then there exist unique linear maps

d: Ωk(M)→ Ωk+1(M)
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such that

1. d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

2. d ◦ d = 0.

3. If f ∈ Ω0(M) = C∞(M), then df is the usual differential.

Moreover, in any coordinate chart, d is given by the formula we have for exterior
differentialtion on Rn, i.e.

dω :=
′∑
I

dωI ∧ dxI .

Also, d commutes with pullbacks by smooth maps, i.e. if f : M → N is smooth,
then

d(f∗ω) = f∗dω.

§4.4 Orientation

Definition 4.4.1: Orientation on Vector Space

We say that two ordered bases for a vector space V have the same orientation if
the change-of-basis matrix has positive determinant.

Equivalently, two ordered bases (e1, . . . , en) and (f1, . . . , fn) have the same
orientation if the unique linear map such that L(ei) = fi for all 1 ≤ i ≤ n has
positive determinant.

This then defines an equivalence relation on the set of ordered bases of V , with
exactly two equivalence classes, called orientations of V . An oriented vector space
is one equipped with a choice of orientation. If V is oriented, ordered bases in
the chosen orientation are called positively-oriented, while the others are called
negatively-oriented.

Example 4.4.2: Orientation on Euclidean Spaces

The standard orientation of Rn is the equivalence class of the standard basis
e1, . . . , en.

In R2, equipped with the standard orientation, a basis v, w is positively-oriented
if and only if the angle from v to w is counterclockwise; while the basis is negatively-
oriented if the angle from v to w is clockwise.

In R3 (again with the standard orientation), positively-oriented bases are deter-
mined by the right-hand-rule:
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Proposition 4.4.3: Orientation on Vector Space determined by a Tensor (Lee Prop.15.3)

Suppose V is an n-dimensional vector space. Then any non-zero 0 6= ω ∈ Λn(V )
(this is an alternating n-tensor, so its a function on an n-tuple of vectors) deter-
mines an orientation Oω of V as follows: if n ≥ 1, then Oω is the set of ordered
bases (v1, . . . , vn) such that ω(v1, . . . , vn) > 0; while if n = 0, then Oω is +1 if
ω > 0, and −1 if ω < 0.

Moreover, two elements of Λn(V ) determine the same orientation if and only
if each is a positive multiple of the other.

Proof. If (v1, . . . , vn), (w1, . . . , wn) are ordered bases and A : V → V,A(vi) = wi.
Then

ω(w1, . . . , wn) = ω(Av1, . . . , Avn)
= A∗ω(v1, . . . , vn) by definition of pullback of alternating tensor
= detA · ω(v1, . . . , vn). we showed that pulling back a top-deg tensor is multiplication by detA

Hence, two bases have the same orientation if and only if ω(v1, . . . , vn) and ω(w1, . . . , wn)
have the same sign, which is the same as saying that Oω is one equivalence class. The
last statement then follows easily. Indeed,

Suppose ω, η ∈ Λn(V ) determine the same orientation, i.e. ω(w1, . . . , wn) > 0 if and
only if η(w1, . . . , wn) > 0. Then �

Remark 4.4.4

1. An orientation of a 1-dim vector space V is just a choice of a nonzero element
up to a positive-multiple. The Proposition then implies that to give an
orientation of V is equivalent to giving an orientation of Λn(V ) ∼= R (not
sure what this means exactly).

2. An orientation of a 0-dim vector space V is either + or −. Since Λ0(V ) := R,
this still corresponds to picking an orientation of Λ0(V ).

3. A linear isomorphism L : V →W of oriented vector spaces if either orienta-
tion preserving (o.p.) or orientation reversing (o.r.), depending on whether L
sends positively-oriented bases to positively-oriented bases, or to negatively-
oriented bases.
To determine which one L is: pick positively-oriented bases for V and W ,
then look at the matrix representation A for L. If detA > 0, then L is o.p..
Otherwise, L is o.r..
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Definition 4.4.5: Pointwise Orientation on Manifold

A pointwise orientation for a manifold M is an orientation for each TMp, p ∈M .

For instance, Rn comes with a standard orientation on each TRnp = R.
We say that a local diffeomorphism f : M → N between pointwise oriented mani-

foldsd is orientation preserving (o.p.) or orientation reversing (o.r.) if dfp is o.p. or
o.r., for all p ∈M . Note: a local diffeomorphism need not be either.

Definition 4.4.6: Orientation on Manifold

An orientation of a smooth manifold M is a pointwise orientation such that M
is covered by orientation preserving charts into Rn (equipped with the standard
orientation).

Remark 4.4.7

1. Would also suffice to say M is covered by orientation reversing charts, since
you can compose with an orientation reversing diffeomorphism of Rn, e.g. a
reflection to get an orientation preserving atlas.

2. If f : M → N is a local diffeomorphism of oriented manifolds (not pointwise
oriented) and M is connected, then f is either o.p. or o.r. (Exercise)

3. Equivalently, a pointwise orientation is an orientation if around every point,
there is a local frame that is positively-oriented.

Proposition 4.4.8: The Orientation Determined by a Coordinate Atlas (Lee Prop. 15.6)

SupposeM has a smooth atlas where all transition maps are o.p. Then there exists
a unique orientation of M such that the charts in the atlas are o.p..

Proof. To define the orientation on M , pick some p ∈M and a chart φ around p, and
use dφp to pullback the standard orientation on Rn to an orientation for TMp. That is,
let

∂

∂x1 , . . . ,
∂

∂xn

be a positively-oriented basis for TMp (recall: ∂
∂xi = dφ−1

p (ei)). Since transition maps
are o.p., this is well-defined and the charts φ are o.p. �

Definition 4.4.9: Oriented Manifold

A manifold is said to be oriented if it admits an orientation.

Example 4.4.10: Tn is an orientable manifold

We show that Tn = Zn
∖Rn is orientable. The transition maps for the natural

atlas coming from the covering map are restrictions of deck transformations, i.e.
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translations, which are o.p.. The induced orientation of Tn is the one where
Rn → Tn is o.p..

Example 4.4.11: The Mobius Band is not orientable

In the coordinates below, let

ε : [0, 1]→ {+,−}

where ε(t) is the sign of the basis (e1, e2) ∈ TM(t,0) with respect to an orientation
we suppose we have. This ε(t) is continuous (i.e. constant) but ε(0) = −ε(1) since
(0, 0) ∼ (0, 1) and TR2

(0,0) is identified with TR2
(0,1) via the map

(x, y) 7→ (x,−y),

which is orientation reversing.

§4.4.1 Orientation on the Boundary
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Definition 4.4.12: Outward Pointing Vector

LetM be an oriented manifold with boundary and let p ∈ ∂M . A vector N ∈ TMp

is outward pointing if whenever

φ : U → V ⊂ Hn

is a chart around p, dφ(N) ∈ THn
φ(N) has negative last coordinate.

Definition 4.4.13: Boundary Orientation

Let M be an oriented manifold with boundary. The boundary orientation on ∂M
is defined by declaring a basis (v1, . . . , vn−1) for T (∂M)p to be positively-oriented
whenever (N, v1, . . . , vn−1) is a positively-oriented basis for TMp, for some outward
pointing N ∈ TMp.

It is left as an exercise to show this is a well-defined orientation.
Remark 4.4.14: Orientation of Sn

Sn ⊂ Rn+1 is orientable since it is ∂Bn+1 (closed ball), abd Bn+1 is orientable.

§4.5 Volume and Integration
§4.5.1 Volume of Parallelopiped
Here is a fact: If B = (v1, . . . , vn) is an ordered basis for Rn, then

|det(v1, . . . , vn)|

is the volume of the parallelopiped spanned by v1, . . . , vn.

Proof of Fact. Let B = (v1, . . . , vn) be an ordered bases of Rn. Consoder the
function

B 7→ sgn(det(v1, . . . , vn)) · volPB
where PB is the parallelopiped spanned by the basis vectors. This function is multilinear
as can be seen:
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and vanishes on linearly dependent set of vectors, so it is an alternating n-tensor. More-
over, our function takes the value 1 on the standard basis. These two facts imply that
the function is the determinant function, since Λn(Rn) is a 1-dim vector space (hence
its elements are exactly scalings of det). �

The above fact shows:

1. More generally, the only reasonable way to assign a notion of volume to a paral-
lelopiped in a vector space is via an alternating tensor.

2. If L : Rn → Rn is linear then L distorts volume by |detL|, i.e.

vol(L(A)) = |detL| · vol(A).

For instance:

§4.5.2 The Change-of-Variables Formula
Suppose G : U → V is a diffeomorphism between open subsets of Rn, and f : V → R is
a compactly supported function. Then∫

V

fdx1 · · · dxn =
∫
U

f ◦G|det dG|dx1 · · · dxn.

Explanation: You need some new factor above to account for the fact that G stretches
volume. E.g.:
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The factor |det dGp| is the infinitesimal distortion of the volume of G, since near p,
G ≈ dG, and |det dG| measures volume distortion of dG.

Note that you don’t integrate functions, you integrate functions against Lebesgue
measure, so the Change-of-Variables formula includes a factor relating to Lebesgue mea-
sure.

§4.5.3 Integration of Forms

Definition 4.5.1: Integral of a Compactly Supported Top-Degree Form on Rn

Suppose ω is a compactly supported n-form in some open U ⊂ Rn, where

ω = fdx1 ∧ · · · ∧ dxn.

Then we define ∫
ω :=

∫
fdx1 · · · dxn.

Proposition 4.5.2: Integral of Pullback of Top-Deg Form via o.p./o.r. Diffeo, on Rn

Suppose G : U → V is an o.p. or o.r. diffeomorphism between open sets U, V in
Rn, and ω is a compactly supported n-form on V . Then∫

G∗ω =
{∫

ω G is o.p.
−
∫
ω G is o.r.

Proof. Suppose G is o.p., and we write ω = fdx1 ∧ · · · ∧ dxn. Then∫
G∗ω =

∫
f ◦Gdet(dG)dx1 ∧ · · · dxn Pullback Formula for Top-Degree Forms

=
∫
fdx1 · · · dxn Change-of-Variables Formula

=
∫
ω.

�

Definition 4.5.3: Integral of Cmpctly Supp Top-Deg Form on Orient Manif

Suppose M is an oriented n-manifold, and ω is an n-form on M that is compactly



CHAPTER 4. TOWARDS A COHOMOLOGY THEORY FOR SMOOTH MANIFOLDS82

supported within the domain of some orientation preserving chart. Then we define∫
ω :=

∫
(φ−1)∗ω,

where φ is any such chart.

Note: the definition of
∫
ω does not depend on the particular φ, since the transition

map between any two such φ is an orientation preserving diffeomorphism, hence by the
above Proposition, the integrals are the same.

Definition 4.5.4: Integral of Any Top-Deg Form on Orient Manif

Suppose M is an oriented n-manifold, and ω is an n-form on M . Pick a partition
of unity {ρi} such that each ρi is compactly supported within the domain of some
orientation preserving chart. Then we define∫

M

ω :=
∑
i

∫
ρiω.

To ensure this is a good definition, we need the following fact: Fact:
∫
ω is independent

of the choice of {ρi}.

Proof of Fact. Suppose {ψj} is another partition of unity. Then we have∑
i

∫
ρiω =

∑
i

∫ ∑
j

ψjρiω

=
∑
i,j

∫
ψjρiω

=
∑
j

∫ (∑
i

ρi

)
ψ)jω

=
∑
j

∫
ψjω.

�

Remark 4.5.5

1. If ω is a 0-form on an oriented 0-manifold M , we define∫
ω =

∑
p∈M

sgn(p)ω(p)

where recall that sgn(p) is + or − depending on orientation.

2. If S ⊂M is an oriented k-submanifold. Then if ω is a k-form onM , we write∫
S

ω :=
∫
S

i∗ω
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where i : S →M is inclusion.

Proposition 4.5.6: Properties of Integrals of n-forms on n-Manifold

1. (integration is linear) ∫
M

aω + gη = a

∫
M

ω + b

∫
M

η.

2. If −M is M with the opposite orientation, then∫
−M

ω = −
∫
M

ω.

3. If ω is positively oriented (i.e. ω(v1, . . . , vn) > 0 whenever v1, . . . , vn is a
positively oriented basis for some tangent space), then∫

ω > 0.

4. If G : M → N is an o.p. or o.r. diffeomorphism,∫
M

G∗ω =
{∫

N
ω G is o.p.

−
∫
N
ω G is o.r.

Theorem 4.5.7: Stokes Theorem

Let M be an oriented n-manifold with boundary, and ω be a compactly supported
(n− 1)-form. Then ∫

M

dω =
∫
∂M

ω.

Note that ∂M has orientation (v1, . . . , vn−1) ∈ T∂Mp is positively orientated when
(N, v1, . . . , vn−1) is positively oriented for TMp, and N outward pointing.

Remark 4.5.8: on Stokes’ Theorem

1. If ∂M =, then the Theorem implies
∫
M

dω = 0.

2. SupposeM = [a, b] (so a 1-Manifold with boundary). Suppose ω is a smooth
function, then dωω′(x)dx..
PIC
So, Stokes’ Theorem says∫ b

a

ω′(x)dx = ω(b)− ω(a),

which is the Fundamental Theorem of Calculus.
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3. Stoke’s Theorem specializes in dimensinos 2 and 3 to the classical Greene’s
and Stokes’ Theorems from multivariable calculus.

§4.5.4 Stokes’ Theorem
Stokes’ Theorem. Suppose M = Hn, ω is supported in

[−R,R]× · · · × [−R,R]× [0, R],

write
ω =

∑
j

ωidx1 ∧ · · · ∧ ˆdxj ∧ · · · ∧ dxn

and hence

dω =
∑
i

dωi ∧ dx1 ∧ · · · ∧ ˆdxj ∧ · · · ∧ dxn

=
∑
i,j

∂ωj
∂xj

dxj ∧ dx1 ∧ · · · ∧ ˆdxj ∧ · · · ∧ dxn

=
∑
i

So ∫
−Hndω =

∑
i

(−1)i−1
∫ R

0

∫ R

−R

�

§4.6 The DeRham Isomorphism Theorem


	Manifolds
	Basic constructions
	Covering Spaces and Group Actions
	Smooth Manifolds
	Constructing Smooth Maps
	Some Applications of Partitions of Unity

	Lie Groups

	Calculus on Manifolds
	From Multivariable Calculus
	On Manifolds
	Tangent Space
	A Construction of the Tangent Space at p

	Derivations
	Tangent Vectors in Coordinates
	Velocity Vectors
	The Tangent Bundle
	Vector Fields

	Structures of Smooth Manifolds
	Classes of Maps between Manifolds
	Sard's Theorem
	Application of Sard's Theorem
	Vector Bundles

	Towards a Cohomology Theory for Smooth Manifolds
	Linear Algebra and Tensors
	Differential Forms
	Exterior Derivative
	Orientation
	Orientation on the Boundary

	Volume and Integration
	Volume of Parallelopiped
	The Change-of-Variables Formula
	Integration of Forms
	Stokes' Theorem

	The DeRham Isomorphism Theorem


