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1 Introduction

Let M be a connected closed oriented n-manifold.

1.1 Fundamental Class

Recall that Hn(M ;Z) ∼= Z has a preferred generator denoted by [M ], called the fundamental
class of M . To obtain a cycle representing [M ], pick some ∆-complex (or triangulation) of M .
Then, [M ] is represented by the sum of the n-simplices in this ∆-structure (being careful to
properly orientate these simplices).

We want to work with homology with real coefficients, so by the standard map Hn(M ;Z) →
Hn(M ;R) induced by the inclusion Z → R, we can similarly view [M ] as a preferred generator
for Hn(M ;R) ∼= R.

1.2 The Simplicial and Gromov Norms

Let Ck(M,R) be the set of k-chains in M with coefficients in R. For c ∈ Ck(M,R), write
c =

∑p
i=1 aiσi where ai ∈ R and σi a singular k-simplex ∀i, with σi ̸= σj for i ̸= j. Then, we

define the simplicial norm

∥c∥ =

p∑
i=1

|ai|.

In some sense, this is counting the number of simplices it takes to write c, where we’re of course
allowing fractional simplices.

Now, we define the Gromov norm of M to be

∥M∥ = inf{∥c∥ : c ∈ Cn(M ;R), c a cycle , [c] = [M ]}.

Similar to above, we can think of ∥M∥ as measuring the infimal number of simplices it takes to
represent [M ], where again we’re allowing fractional simplices. As we’ll see, there are non-trivial
manifolds for which the Gromov norm is zero, so for a number of reasons this is not a true norm.

Remark: One might wonder if one will be able to find a ∆-structure for M consisting of
∥M∥ n-simplices. This will not be the case in the examples we’ll consider.

2 Computing with Σg

We’ll do some computations related to the Gromov norm, motivated by trying to determine
∥Σg∥, where Σg is the closed orientable surface of genus g.
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Example 1. We’d like to consider ∥Σg∥, where Σg is the closed orientable surface of genus g.
Recall that we have a standard ∆-structure for Σg with 4g − 2 2-simplices (obtained from a
4g-gon). As mentioned above, the chain given by the sum of these 4g − 2 simplices (properly
oriented) gives a representative of [Σg]. Thus, we have ∥Σg∥ ≤

∑4g−2
i=1 |1| = 4g − 2.

We’ll try to do some improvements on this bound.

Proposition 1. If p : M → N is a degree d < ∞ covering map of oriented closed connected
manifold, then ∥M∥ = d∥N∥.

Proof. Let c =
∑

aiσi be a cycle representing [M ]. Then, p ◦ c =
∑

ai(p ◦ σi) is a cycle
representing p∗([M ]) = ±d[N ]. Thus,

∑
(±ai/d)(p ◦ σi) represents [N ], so we see

∥N∥ ≤
∑

(|ai|/d) = (1/d)
∑

|ai|.

Taking the infimum over the right hand side, as in the definition of ∥M∥, we have d∥N∥ ≤ ∥M∥.
To establish the reverse inequality, let s =

∑
biτi be a cycle representing [N ]. Since ∆n is

simply connected, each map τi : ∆
n → N has d lifts τ̃1i , ..., τ̃

d
i to M . Then, s̃ :=

∑
i(bi

∑d
j=1 τ̃

j
i )

is a cycle in M , and p∗([s̃]) = d[s] = d[N ] = ±p∗([M ]). Since p∗ is injective (being a non-
zero linear map between rank 1 vector spaces), we have [±s̃] = [M ]. Thus, we can conclude
that ∥M∥ ≤

∑
i d|bi| = d

∑
i |bi|. Taking the infimum over the right hand side then yields

∥M∥ ≤ d∥N∥.

Example 2. Let’s consider the torus T = Σ1. Recall that for any d ∈ N, there is a d-sheeted
covering map T → T (by winding around itself d times). Thus, Proposition 1 tells us that for
all d ∈ N, we have ∥T∥ = d∥T∥, so we must have ∥T∥ = 0.

We can also use the proposition to improve upon Example 1:

Example 3. Consider Σg, for g ≥ 2. Recall (eg. Hatcher pg 73) that for all d ∈ N, there is a
d-sheeted covering Σd(g−1)+1 → Σg. Thus, we have

d∥Σg∥ = ∥Σd(g−1)+1∥ ≤ 4(d(g − 1) + 1)− 2 = 4d(g − 1) + 2

where the first equality comes from Proposition 1 and the inequality comes from Example 1.
Hence, dividing both sides by d gives us ∥Σg∥ ≤ 4(g − 1) + (2/d). Then, letting d → ∞, we
obtain ∥Σg∥ ≤ 4(g − 1).

Fact. For g ≥ 2, ∥Σg∥ = 4(g − 1).

This fact is not too deep, but does take a little bit of machinery (eg. hyperbolic geometry)
to prove (see Benedetti and Petronio B.3.3, C.2.3, C.4.6).

Above, it was suggested that the Gromov norm gives a way of measuring the number of
simplices it takes to represent the fundamental class. One may wonder, then, if there is a ∆-
complex structure for Σg consisting of 4(g − 1) 2-simplices. We’ll show that this is not the
case:

Example 4. Suppose (for contradiction) we have a ∆-complex structure for Σg consisting of
4(g − 1) 2-simplices. There are then (3/2)4(g − 1) edges in this decomposition, so if v is the
number of vertices, we have

2− 2g = χ(Σg) = 4(g − 1)− (3/2)4(g − 1) + v = 2− 2g + v,

so we must have v = 0, which cannot be the case.
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Remark: One can show that for any closed orientable hyperbolic n-manifold, the infimum
can never by achieved, even with fractional coefficients. (Proof: As in Prop C.4.6 in BP, we
have vol(M) =

∑
ai · algvol(σi) =

∑
|ai|sgn(ai)algvol(σi) < vn

∑
|ai|; then apply C.4.2).

Applications to Hyperbolic Geometry

An n-simplex in Hn with hyperbolic faces (and in particular geodesic edges) is said to be ideal
if all of its vertices lie in ∂Hn and is said to be regular if (somewhat informally) it has maximal
symmetry with respect to isometries of Hn. Now, let vn be the volume of a regular ideal n-
simplex. Note that, in fact, all regular ideal n-simplices have the same volume, so this definition
makes sense.

Theorem 1. If M is an oriented compact hyperbolic n-manifold, then ∥M∥ = vol(M)/vn.

Let us remark that since ∥M∥ is defined purely topologically, this in particular tells us
that the hyperbolic volume of M is a topological (and in fact a homotopy) invariant, which is
somewhat surprising.

This suggests a connection between the topology and geometry of hyperbolic manifolds, and
that the Gromov norm may be useful in demonstrating these connections. Indeed, when n ≥ 3,
the topology of a hyperbolic n-manifold determines the geometry in a very strong way, as the
next theorem states. A proof of this theorem was given by Gromov and Thurston in 1982 using
the Gromov norm.

Theorem 2. (Mostow Rigidity) If M1,M2 are compact oriented hyperbolic n-manifolds with
n ≥ 3 such that π1(M1) ∼= π1(M2), then M1 and M2 are isometric.
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