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1 Introduction

Let M be a connected closed oriented n-manifold.

1.1 Fundamental Class

Recall that H, (M;Z) = Z has a preferred generator denoted by [M], called the fundamental
class of M. To obtain a cycle representing [M], pick some A-complex (or triangulation) of M.
Then, [M] is represented by the sum of the n-simplices in this A-structure (being careful to
properly orientate these simplices).

We want to work with homology with real coefficients, so by the standard map H,,(M;Z) —
H,(M;R) induced by the inclusion Z — R, we can similarly view [M] as a preferred generator
for H,(M;R) = R.

1.2 The Simplicial and Gromov Norms

Let Cx(M,R) be the set of k-chains in M with coefficients in R. For ¢ € Ci(M,R), write
¢ =>" ,ajo; where a; € R and o; a singular k-simplex Vi, with o; # o; for ¢ # j. Then, we
define the simplicial norm
P
llell = laal.
i=1

In some sense, this is counting the number of simplices it takes to write ¢, where we’re of course
allowing fractional simplices.
Now, we define the Gromov norm of M to be

| M| = inf{||c|| : ¢ € Cr,(M;R),c a cycle , [¢] = [M]}.

Similar to above, we can think of ||M|| as measuring the infimal number of simplices it takes to
represent [M], where again we're allowing fractional simplices. As we’ll see, there are non-trivial
manifolds for which the Gromov norm is zero, so for a number of reasons this is not a true norm.

Remark: One might wonder if one will be able to find a A-structure for M consisting of
|| M || n-simplices. This will not be the case in the examples we’ll consider.

2 Computing with X,

We’ll do some computations related to the Gromov norm, motivated by trying to determine
|Xg]l, where X4 is the closed orientable surface of genus g.



Example 1. We'd like to consider ||X4||, where X is the closed orientable surface of genus g.
Recall that we have a standard A-structure for ¥, with 49 — 2 2-simplices (obtained from a
4g-gon). As mentioned above, the chain given by the sum of these 4g — 2 simplices (properly

oriented) gives a representative of [¥4]. Thus, we have ||X4|| < Z?izz 1] =4¢g—2. O

We'll try to do some improvements on this bound.

Proposition 1. If p: M — N is a degree d < oo covering map of oriented closed connected
manifold, then [|[M|| = d||N]||.

Proof. Let ¢ = > a;0; be a cycle representing [M]. Then, poc = > ai(po o) is a cycle
representing p,([M]) = £d[N]. Thus, > (+a;/d)(p o 0;) represents [N], so we see

INI <> (lail/d) = (1/d) Y |ail.

Taking the infimum over the right hand side, as in the definition of || M ||, we have d||N|| < || M]|.

To establish the reverse inequality, let s = ) b;7; be a cycle representing [N]. Since A™ is
simply connected, each map 7; : A™ — N has d lifts 7}, ..., 7% to M. Then, 5 := > (b Z;i:l %ZJ)
is a cycle in M, and p.([s]) = d[s] = d[N] = £p.([M]). Since p, is injective (being a non-
zero linear map between rank 1 vector spaces), we have [£5] = [M]. Thus, we can conclude
that ||M] < >, d|bi|l = d)_,|b;j|. Taking the infimum over the right hand side then yields

M| < d|[N. ]

Example 2. Let’s consider the torus T = ;. Recall that for any d € N, there is a d-sheeted
covering map 1" — T' (by winding around itself d times). Thus, Proposition 1 tells us that for
all d € N, we have ||T|| = d||T||, so we must have |T|| =0. O

We can also use the proposition to improve upon Example 1:

Example 3. Consider ¥, for ¢ > 2. Recall (eg. Hatcher pg 73) that for all d € N, there is a
d-sheeted covering ¥jy_1)41 — 4. Thus, we have

d|[Xg]l = [Eagg-1)+1ll < 4d(g —1) +1) =2 =4d(g — 1) + 2

where the first equality comes from Proposition 1 and the inequality comes from Example 1.
Hence, dividing both sides by d gives us ||X4]| < 4(9 — 1) + (2/d). Then, letting d — oo, we
obtain [|¥4]| <4(¢9—1). O

Fact. For g > 2, [|34]| = 4(9 — 1).

This fact is not too deep, but does take a little bit of machinery (eg. hyperbolic geometry)
to prove (see Benedetti and Petronio B.3.3, C.2.3, C.4.6).

Above, it was suggested that the Gromov norm gives a way of measuring the number of
simplices it takes to represent the fundamental class. One may wonder, then, if there is a A-
complex structure for ¥, consisting of 4(g — 1) 2-simplices. We’ll show that this is not the
case:

Example 4. Suppose (for contradiction) we have a A-complex structure for ¥, consisting of
4(g — 1) 2-simplices. There are then (3/2)4(g — 1) edges in this decomposition, so if v is the
number of vertices, we have

2-29=x(3g) =4(g—1) - (3/2)4(g - 1) +v=2-2g9+v,

so we must have v = 0, which cannot be the case. [



Remark: One can show that for any closed orientable hyperbolic n-manifold, the infimum
can never by achieved, even with fractional coefficients. (Proof: As in Prop C.4.6 in BP, we
have vol(M) = a; - algvol(o;) = >~ |as|sgn(a;)algvol(o;) < v, Y |as|; then apply C.4.2).

Applications to Hyperbolic Geometry

An n-simplex in H" with hyperbolic faces (and in particular geodesic edges) is said to be ideal
if all of its vertices lie in OJH" and is said to be regular if (somewhat informally) it has maximal
symmetry with respect to isometries of H". Now, let v, be the volume of a regular ideal n-
simplex. Note that, in fact, all regular ideal n-simplices have the same volume, so this definition
makes sense.

Theorem 1. If M is an oriented compact hyperbolic n-manifold, then ||M|| = vol(M) /v,,.

Let us remark that since ||M|| is defined purely topologically, this in particular tells us
that the hyperbolic volume of M is a topological (and in fact a homotopy) invariant, which is
somewhat surprising.

This suggests a connection between the topology and geometry of hyperbolic manifolds, and
that the Gromov norm may be useful in demonstrating these connections. Indeed, when n > 3,
the topology of a hyperbolic n-manifold determines the geometry in a very strong way, as the
next theorem states. A proof of this theorem was given by Gromov and Thurston in 1982 using
the Gromov norm.

Theorem 2. (Mostow Rigidity) If M;, My are compact oriented hyperbolic n-manifolds with
n > 3 such that m1(My) = 71 (M), then My and My are isometric.
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