
Multivariable Calculus Practice Problems for Midterm 3

November 13, 2020

Note: Starred (?) questions are much harder than questions on the exam. Feel free to skip.

1. Understand intuitively what the boundary of a subset of Rn means.

2. Understand intuitively what it means for a subset of Rn to be closed.

3. Understand intuitively what it means for a subset of Rn to be bounded.

4. Specify whether the following subsets of Rn are closed, or bounded, both, or neither. Also identify the
boundary of each subset.

(a) {1} ⊂ R. Closed, bounded, boundary is {1}
(b) The interval (1, 2) ⊂ R. Not closed, bounded, boundary is {1, 2}.
(c) The union of two intervals (−5, 2] ∪ [3, 7] ⊂ R. Not closed, bounded, boundary is {−5, 2, 3, 7}
(d) (?) {(x, y) ∈ R2 : |x− y| < 2}. Closed, not bounded, boundary is the set itself.

(e) {(x, y) : |(x, y)| < 4}. This is an open circle of radius 2, so not closed, bounded, and the boundary
is {(x, y) : |(x, y)| = 4}.

(f) (?){(x, y, z) ∈ R3 : x2 + y2 − z = 0}. This is the paraboloid defined by the equation z = x2 + y2.
Closed, not bounded, boundary is the whole set.

(g) {(x1. . . . , xn) ∈ Rn : x2 = x3 = · · · = xn = 0}. This is the x-axis in Rn, so closed, not bounded,
boundary is the whole set itself.

(h) (?)
⋂∞

n=1

[
− 1

n ,
1
n

]
.

(i) (?)
⋃∞

n=1[0, n].

Here’s a useful thing to remember: for a FINITE interval, with endpoints a, b that are finite numbers,
the interval’s boundary are its endpoints.

5. Show that every plane that is tangent to the cone x2 + y2 = z2 passes through the origin.

Solution: Let (x0, y0, z0) be an arbitrary point on the cone. Let

f(x, y, z) = x2 + y2 − z2.

The the cone is the level set of f corresponding to the value 0. We have

∇f = 〈2x, 2y, 1〉

and so
∇f(x0, y0, z0) = 〈2x0, 2y0, 1〉.

And this vector should be perpendicular to the tangent plane at (x0, y0, z0), so we can use it as the
normal vector for the tangent plane, which has equation

2x0(x− x0) + 2y0(y − y0) + 2(z − z0) = 0.
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We can show that (0, 0, 0) is a solution to this equation, which would show that the origin lies on the
tangent plane:

2x0(0− x0) + 2y0(0− y0) + 2(0− z0) = 0

−2x20 − 2y20 − 2z0 = 0

x20 + y20 − z0 = 0

which we know to be a valid equation because by assumption (x0, y0, z0) lies on the cone, i.e. is a
solution to the above equation.

6. Show that every normal line to the sphere x2 + y2 + z2 = r2, for r > 0, passes through the center of
the sphere. Also show that none of the tangent planes to the sphere passes through the center.

Solution: Let (x0, y0, z0) be an arbitrary point on the sphere. By the same reasoning as that of the
previous problem, we set

f(x, y, z) = x2 + y2 + z2.

Then the sphere corresponds to the level set of f taking value r2. We find the gradient of f :

∇f(x, y, z) = 〈2x, 2y, 2z〉,

so
∇f(x0, y0, z0) = 〈2x0, 2y0, 2z0〉.

The normal line will be in the direction of this vector because we know that the gradient is perpendicular
to the level set (the sphere), so the normal line is

r(t) = 〈x0, y0, z0〉+ t〈2x0, 2y0, 2z0〉

To check that the origin is on this line, we can take t = 1
2 , which would give

r(t) = 〈x0, y0, z0〉 − 〈x0, y0, z0〉 = 〈0, 0, 0〉,

showing that the origin is indeed on the line.

Using the same gradient vector, we can write down the equation for the tangent plane at (x0, y0, z0):

2x0(x− x0) + 2y0(y − y0) + 2z0(z − zo) = 0.

To show that the origin is not on this plane, we can plug in (0, 0, 0), and it should give us something
non-sense, i.e. (0, 0, 0) does not solve this equation. So if we plug in (0, 0, 0), we get

−2x20 − 2y20 − 2z20 = 0

x20 + y20 + z20 = 0

which is a contradiction because by assumption (x0, y0, z0) lies on the sphere, i.e. it has to satisfy the
equation

x20 + y20 + z20 = r2 > 0.

7. On the topographical map below, the level curves for the height function h(x, y) are marked (in feet);
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adjacent level curves represent a difference of 100 feet in height.

Mark on the map a point Q at which h = 2200, ∂h
∂x = 0, and ∂h

∂y < 0.

Firstly, the point has to be on the level curve corresponding to h = 2200. We also need that in the
x-direction, the function does not change, this amounts to being “flat” in the x-direction, and secondly,
we need that in the y-direction, the function decreases. This only gives us one possible place to put Q.

8. Given a multivariable function f(x1, . . . , xn), and fix a point a = (a1, . . . , an),

(a) Describe in which direction from a the function increases the most rapidly.

(b) Describe in which direction from a the function decreases the most rapidly.

(c) Describe in which direction from a the function does not change.

9. State the Extreme Value Theorem. Make sure you understand every part of the statement. Give
counterexamples to the claim of the Theorem if each of the assumptions are not met. To be more
precise, the EVT assumes continuity of a function, defined on a closed and bounded domain. Give:

(a) An example of a situation where the claim of the EVT is not met when the function is not
continuous.

(b) An example of a situation where the claim of the EVT is not met when the domain is not closed.

(c) An example of a situation where the claim of the EVT is not met when the domain is not bounded.

10. A rectangular box in the first octant of R3 as shown, with one corner at the origin and the three
adjacent faces in the coordinate planes. The opposite point P is constrained to lie on the paraboloid
x2 + y2 + z = 1. We are interested in finding a P such that it gives the box the largest volume.
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(a) Show that the problem leads one to maximize f(x, y) = xy − x3y − xy3, and write down the
equations for the critical points of f . Solution: If P has coordinates (x, y, z), then the volume is

V (x, y, z) = xyz

But P is constrained to the paraboloid, which we can write as

z = 1− x2 − y2,

which if we substitute into V , we get

V (x, y, z) = xy(1− x2 − y2) = xy − x3y − xy3.

The equations for the critical points are

fx = y − 3yx2 − y3 = 0

and
fy = x− x3 − 3xy2.

(b) Find a critical point of f which lies in the first quadrant (x > 0, y > 0). Using the first derivative
test, by solving the above two equations, and imposing that x, y > 0, there is only one solution
which is

x =
1

2
, y =

1

2
.

(c) Determine the nature of this critical point by using the second derivative test. Using the second
derivative test, first by computing

fxx = −6yx

fyy = −6xy

fxy = fyx = 1− 3x2 − 3y2

we get that, at the point (1/2, 1/2):

fxxfyy − (fxy)2 > 0

and
fxx < 0

so we have a local minimum.

(d) (?) Find the maximum of f in the first quadrant without using Lagrange multiplier. (You must
justify why this point is indeed the maximum)

(e) Solve this problem using Lagrange multiplier. By using Lagrange Multiplier, we solve for the
system of equation

V (x, y, z) = xyz

subject to the constraint
g(x, y, z) = x2 + y2 + z.

First we find gradients
∇V (x, y, z) = 〈yz, xz, xy〉
∇g(x, y, z) = 〈2x, 2y, 1〉

So we have the system of equations
yz = 2λx

xz = 2λy

xy = λ

Which you can solve to give only one solution if you assume x, y, z ≥ 0, which is x = 1/2, y = 1/2,
and z = 1/2. To actually make sure this is a maximum and not a minimum, observe that you can
find values x, y, z that give smaller volume, so this must be a maximum.
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