

11/13 - 11/16/2020

Midterm Exam 3

90 minutes

Name: Section: **Instructions.**

- (1) Submit your solutions on **Gradescope** under the course **MATH2202 01 & 02 - Exams and Quizzes** before 11:59 pm on 11/16.
- (2) Once you have started the exam, you have **at most 90 minutes** to finish and submit your exam.
- (3) Show *all* the steps of your work clearly. Little or no credit may be awarded, even when your answer is correct, if all work, including scratch work, is not shown.
- (4) Indicate your final answers **clearly**.

Question	Points	Your Score
Q1	16	
Q2	10	
Q3	10	
Q4	14	
Q5	14	
≤ 90 mins	5	
TOTAL	69	

Question 1 [16 points] Answer the following questions. No justification is needed.

(1) Consider the following sets in \mathbb{R}^n :

$$\begin{aligned}A &= \{1, 2, 3\} \subset \mathbb{R}. \\B &= (-\infty, 0] \cup [6, 7] \subset \mathbb{R}. \\C &= \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 100\}. \\D &= \{(0, y) \in \mathbb{R}^2 \mid y > 0\}. \\E &= \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 10^{100}\}.\end{aligned}$$

(1a) Which sets are closed?

(1b) Which sets are bounded?

(2) Consider the function $f(x, y, z) = x \sin(y) \cos(z^2)$ and answer the following questions:

(2a) $\nabla f = (\quad, \quad, \quad)$.

(2b) Find the **unit** vector along which the function $f(x, y, z)$ increases most rapidly at the point $(0, \frac{\pi}{2}, 0)$.

(3) Given $\nabla f(3, 0, 2) = (1, 1, 1)$, find the directional derivative of $f(x, y, z)$ at the point $(3, 0, 2)$ in the direction of $\mathbf{u} = (\frac{2}{3}, -\frac{2}{3}, \frac{1}{3})$.

(4) Let $f(x)$ be a continuous function defined on an interval $I \subset \mathbb{R}$.

(4a) Suppose $I = (0, 1)$. Can $f(x)$ always achieve its maximal and minimal values on I ? If not, give a counterexample.

(4b) Suppose $I = [0, +\infty)$. Can $f(x)$ always achieve its maximal and minimal values on I ? If not, give a counterexample.

Question 2 [10 points] Are there any points on the hyperboloid $x^2 - y^2 - z^2 = 1$ where the tangent plane is parallel to the plane $z = x + y$?

Question 3 [10 points] Find all critical points of $f(x, y) = x^3 - 3xy + y^3$. Determine which critical points are local maxima, which are local minima, and which are saddle points.

Question 4 [14 points] Evaluate the following double integrals.

(1) $\iint_D ye^{xy} dx dy$, where $D = \{(x, y) \mid 0 \leq x \leq 2, 0 \leq y \leq 1\}$.

(2) $\int_0^9 \int_{\sqrt{y}}^3 e^{x^3} dx dy$. (Hint: change the order of integration.)

Question 5 [14 points] Use the method of Lagrange multipliers to find the points on the curve $xy^2 = 16$ which are closest to the origin in the xy -plane.