

due 10/16 2:00pm

Mock Midterm exam 2

90 minutes

Name:

Section:

Instructions.

- (1) No quiz this week, but there will be a quiz next week after the midterm.

Question 1 Consider a curve $\vec{r}(t) = (2t, 1 - 3t, 5 + 4t)$ for $t \geq 0$.

- (1) Calculate the length of the curve with $0 \leq t \leq t_0$.
- (2) Find the arc-length parameterization $\vec{r}(s)$ where s is the arc-length parameter.
- (3) Calculate $\frac{d\vec{r}}{ds}$ and $\frac{d^2\vec{r}}{ds^2}$.
- (4) Calculate the curvature $\kappa(s)$ of the curve using the arc-length parameter.

Question 2 Consider the function $f(x, y, z) = \sin(3x + yz)$ and the unit vector $\vec{u} = (\frac{1}{3}, \frac{2}{3}, 1)$. Find:

- (1) The partial derivative of f with respect to x .
- (2) The partial derivative of f with respect to y .
- (3) The partial derivative of f with respect to z .
- (4) The gradient of f .
- (5) The directional derivative of f along/in the direction of \vec{u} .

Question 3 Consider the function $f(x, y) = \ln(x^2 + 4y^2)$.

- (1) What is the domain of definition of $f(x, y)$?
- (2) What is the range of the function $f(x, y)$?

Question 4

- (1) Write down a vector valued function $\vec{r}(t)$ that corresponds to a circle on the plane centered at 0 with radius 1.
- (2) Compute the curvature of the circle.

Question 4 State what it means for a function $f(x, y)$ to be continuous at a point $(a, b) \in \mathbb{R}^2$.

Question 5 [10 points] Find the limit, if it exists, or show that the limit does not exist.

$$(1) \lim_{(x,y) \rightarrow (0,0)} \frac{\sin(xy)}{xy}.$$

$$(2) \lim_{(x,y) \rightarrow (0,0)} \frac{y^4}{x^4 + 3y^4}.$$

Question 6

(1) Find the linear approximation of $f(x, y) = 3y^2 - 2x^2 + x$ at the point $(x, y) = (1, 1)$. Simplify your answer to the form $L(x, y) = Ax + By + C$.

Question 7

Review implicit differentiation and make sure you know how to do it, specifically be able to use Equation 6 and Equation 7 in Section 11.5.