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Chapter 0

Introduction

The primary purpose of this article is to give two proofs of the following
fact:

Let Ny be the number of smooth projective rational plane curves passing through
3d — 1 points. Then the following recursive formula holds:

3d — 4 3d — 4
N; = N; Ny didg (d —d
’ dA;dﬁ:d dauTA B( B<3dA_1> A(BdA—1>)

Starting with the trivial fact N; = 1, this formula allows one to compute N,
for any d.

This formula was originally proven by Kontsevich and Manin in their 1994
paper [11] using the then new methods involving stable maps, quatum co-
homology, and Gromov-Witten invariants. Central to all of these was the
role played by the moduli space My ,(IP",d) classifying morphisms C — P”
from an n-pointed at-worse nodal projective rational curve C to IP" of degree
d, subject to a certain stability condition, which is equivalent to having finite
automorphisms.

We will postpone the proof of Kontsevich and Manin after a more elemen-
tary direct proof is given, which is done via counting maps in M, (IP",d)
meeting prescribed conditions using essentially elementary combinatorics
to justify the terms in the formula.

Then, we will introduce (genus-0) Gromov-Witten invariants on Mg ,(IP",d),
which essentially enumerates maps that meet these prescribed conditions,
and whose generating functions we use to define the quantum product on
the cohomology of IP". The associativity of this quantum product turns out
to be equivalent to the Witten-Dijkgraaf-Verlinde-Verlinde (WDVYV) differen-
tial equations, which in turn gives the above recursive formula in a special
case.



The road to both proofs is paved in the language of moduli spaces. Specifically,
moduli spaces of genus-0, nodal pointed curves, and moduli spaces of maps
from these curves to IP". Moduli spaces can be thought of as the algebro-
geometric version of a classifying space. The precise definition of such a space
in an algebro-geometric setting requires a suitable definition for a family of
objects to classify, and a universal property satisfied by the moduli space, as
the unique base parametrizing some universal family.

This article is expository in nature. Throughout, we follow closely the book
An Invitation to Quantum Cohomology by Joachim Kock and Israel Vainsencher,
and Notes on Stable Maps and Quantum Cohomology by William Fulton and
Rahul Pandharipande (which we denote by the short hand F-P). We (defi-
nitely) do not claim any new results in this article.

Outline

We start in Chapter 1. with an introduction and overview of the notion
of a moduli problem, and conditions on an algbebro-geometric object to
be a fine or course moduli space for a moduli problem. The spirit of the
moduli problem is in asking for the best algebro-geometric object (varieties,
schemes, stacks,...) whose geometry reflects how isomorphism classes vary.
In other words, the most natural parametrization of the classes by some
algebro-geometric object. As with most statements involving the word best
or natural, the precise statement is a universal property on families of objects.

Subsequently, the bulk of the paper of Chapters 2. and 3. consists of work-
ing towards a description of My, (IP",d). This requires a trek through several
other moduli problems and moduli spaces: the moduli space My, classi-
tying n-pointed smooth rational curves, and its Delign-Mumford-Knudsen
compactification My, which adds in nodal curves; and the moduli space
My, (IP", d) which classifies degree d maps from an n-pointed smooth ratio-
nal curve C to IP’, of which M ,(IP",d) will be a compactification of. In
each of these, our focus will be on the precise formulation of the moduli
problem associated to it. We give the constructions of My, and My, (IP",d),
and prove they are indeed (fine) moduli spaces for their associated moduli
problems. However, the corresponding results for their compactifications
are omitted for they are beyond the scope of this article.

In Chapter 4. we give a direct proof of the formula by utilizing a combinato-
rial relation on the boundary My, (P",d) \ My, (P, d).

In Chapter 5, we introduce genus-0 Gromov-Witten invariants, which roughly
speaking, counts the number of curves in IP” meeting prescribed incidence
conditions.



In Chapter 6, we introduce the quantum cup product, a binary operation de-
fined on the cohomology groups of IP" (and more generally for an arbitrary
homogeneous variety X), which are defined in terms of partial derivatives
of generating functions of the Gromov-Witten invariants. Subsequently, we
show that the associativity of said product is equivalent to the recursive
formula above.

Background Knowledge

We assume a working knowledge of basic algebraic geometry roughly at the
level of Chapters 1., 2., and some parts of 3. of Hartshorne [7].

Some knowledge of intersection theory will be needed, mainly the contents
of Chapters 1. and 2. from the book by Fulton [5]. See the Appendix A for
a selection of important topics.

Some elementary complex analysis will also be assumed. We will freely
use the theory of complex manifolds and analytic spaces when needed. In
particular we use some results concerning genus-0 Riemann surfaces and
complex algebraic curves.

Knowledge of the theories of singular homology and cohomology from al-
gebraic topology is also needed.

Conventions and Notations

We will work over C. Thus, a scheme is a scheme over C. We use the notation
e := Spec(C).

If unspecified, fiber products are taken over Spec(C), i.e. if
X — Spec(C), Y — Spec(C)
are schemes over C, then
X x'Y means X Xgpec(c) ¥

We will denote the projection maps associated to the fiber product X xsY
bypy:Xst%Yande:XXSY%X.

Since all schemes will be assumed to be over C, the set of closed points and C-
valued points or geometric points of a scheme are in one-to-one correspondence
and thus will be used interchangeably. In particular a geometric fiber will
mean a fiber over such a point.

A variety is a reduced, integral scheme of finite type over C. Equivalently, it
is a quasi-projective variety over C from the viewpoint of classical algebraic
geometry. In particular, a variety is irreducible.



A curve is a variety of dimension one.

We will use the terms map and morphism interchangeably.
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Chapter 1

Moduli Problems and Moduli Spaces

1.1 The Classification Problem

A classification problem is the task of describing a class of objects up to a cho-
sen equivalence relation. For us, the objects are algebro-geometric objects,
although in a possibly more general setting they need not be. In other words,
given a collection S of objects (schemes, curves, rational curves, varieties,...),
and an equivalence relation ~g on S, we wish to describe the set of equiv-
alence classes S/ ~s. For algebraic geometers, “to describe” amounts to
asking if there is a natural scheme, or possibly some more general algebro-
geometric structure, on S/ ~g. This approach to a classification problem we
will term a moduli problem.

There are more than one set of criteria of varying strength for the suitabil-
ity and naturality of an algebro-geometric structure on S/ ~gs. One of the
requirements we would like the structure to have is that it “parametrizes”
the isomorphism classes in the best way possible, which we will define in
terms of a universal property. In algebraic geometry, the notion of a collec-
tion of schemes parametrized by some fixed base scheme is formalized by
viewing a morphism S — B as a collection of fibers parametrized by the
closed points of B, a.k.a. a family over/parametrized by B. We will however
also need to impose conditions and structures on the morphism to suit the
types of objects we want to classify at hand.

In the best case scenario, to find the most suitable scheme structure will
amount to finding such a morphism, in which each fiber is isomorphic to (a
representative of) an isomorphism class of objects. The base scheme will be
called the (fine) moduli space, and is what we are looking for.

However, in many cases, many classes of objects we would naturally want to
classify do not yield the existence of such a morphism and a corresponding
base scheme. Thus in the theory of moduli we frequently relax the condi-



1.2. Families of Objects, Pullbacks, and the Moduli Functor

tions of the universal property to get the next-best thing. We will introduce
this notion as the coarse moduli space.

In more sophisticated and advanced circles, even a coarse moduli space may
not exist for some particular moduli problem. It may even be the case that
no suitable scheme structure can be found. The study of algebraic stacks
was largely motivated by a need to enlarge the category of schemes to find
suitable moduli spaces in these scenarios. We will not discuss anything
related to algebraic stacks in this paper.

Even though it is possible in the general theory of moduli to consider gen-
eral types of objects and general types of mathematical structures, for the
purpose of this paper, our objects in S are always some particular collec-
tion of schemes or morphisms of schemes, possibly with some extra struc-
tures; the equivalence relation on the objects of S will always be scheme
isomorphism, or isomorphism of morphisms, respectively; and whatever
extra strcutures must be respected by the isomorphism. For example, we
may consider the case of classifying rational curves up to isomorphism, in
which case S = {smooth rational curves}, and ~g is scheme isomorphism
(equivalently, in this case, isomophism of varieties); or we may consider the
case of classifying morphisms C — IP” from a smooth rational curve C, up
to equivalence of maps, i.e. maps are considered equivalent if there is an
isomorphism on the source curves respecting the individual maps. We will
make these notions precise as we go.

1.2 Families of Objects, Pullbacks, and the Moduli Func
tor

We will first need the notion of a family of objects. Intuitively, it is a collection
of objects parametrized or indexed by the geometric points of a base scheme
B. This is formalized by the notion of a morphism of schemes:

:

Recall that there is a canonical scheme structure over each (closed) point of B,
thus indeed this is as a collection of fibers, which are scheme, parametrized
by closed points of B. To be a collection of our objects of interest, each fiber
should be such an object. Thus we may impose that each fiber be isomorphic
to a curve, or a surface, or even a map, or whatever it is that we are trying
to classify. To make this work we often need to impose extra structures on
the morphism. For example we may need to attach a map to each fiber so
that we may have a family of maps.



1.2. Families of Objects, Pullbacks, and the Moduli Functor

This notion of a morphism being a collection of fibers parametrized by the
base space should be reminiscent of the definition of a fiber bundle. Indeed,
the reason one can think of a fiber bundle

E

|

B

as a collection of fibers parametrized by the points of the base space is pre-
cisely given by the condition of local triviality. That is, locally in B, the
bundle looks like a trivial bundle:

UxF

|

u

where U is the local neighborhood and F is the fiber. In other words, one
can think of the fibers are “continuously varying” along the base.

In the world of schemes, the analogue to the notion of continuous varying
fibers is flatness. Indeed, we will only ever consider flat families. This is
a good condition to have and relates the geometry of the base to that of the
fibers. Essentially, we only allow a base that “glues the fibers in a continuous
fashion”.

In addition, it is common that properness is imposed on the morphism.
Properness for morphism of schemes can be roughly thought of as having
compact fibers. Throughout this article, all of our families will be proper.
This is more of a direct consequence of the types of objects we are consider-
ing, and not particularly an imposed condition.

We will denote the (flat) family
X

|

B

as X/B or simply (by abuse of notation) X if there is no risk of confusion.
We will call the morphism itself the structure morphism of the family. Even
though technically the morphism is the family, this language indicates that
one should really think of the family as the collection of fibers, and the
morphism as a tool to bind them together along a parameter space.

Some examples:

Example 1.1 If our goal is to classify all curves up to isomorphism, i.e. S =
{curves} and ~ is isomophism of schemes, then a family of curves is a

7



1.2. Families of Objects, Pullbacks, and the Moduli Functor

morphism X — B such that the fiber over every geometric point of B is
isomorphic to a curve.

Example 1.2 If say we are interested in classifying maps from curves to
some fixed space IP", we may define a family of such maps to be

X 1, pr

T

B

such that 77 is a family of curves. Thus yu restricted to each fiber is a map
from a curve to IP". In this particular case the structure morphism for the
family of maps of curves is 71, and we consider the map y to be an example
of extra structure we impose on the family.

We will also need the notion of pullbacks of families. This allows us to “change
the parametrization” of the family (in a way compatible with operations in
the category of schemes). More precisely, if X/B is a family parametrized
by B, and ¢ : B' — B is a morphism of schemes, then we want an induced
family over B’, denoted by ¢*X/B’, called the pullback family along ¢. This
pullback family is defined as the fiber product B’ xp X.

This definition also explains the term “base change”. When we pull a family
back along a morphism, we are literally “changing the base” of this family
to another one.

One might again notice, this is analogous to pulling back a bundle along a
morphism into the base.

There should also be a notion of equivalence of families over a common
base compatible with the pullback operation. That is, we should have an
equivalence relation on the set of families parametrized by a common base
scheme B. More precisely, we have an equivalence relation on the set of
families over B, such that if X/B and X'/B are equivalent families, then for
any morphism ¢ : B — B, we have ¢*X/B’ ~ ¢*X'/B’ (as families over B').
Intuitively, we should formulate some way of saying that families over the
same base contain the same data are considered the same; and this notion
should be compatible with any possible re-parametrization. Naturally, the
notion of equivalency of families is most often given by an isomorphism
on the total space making the obvious diagram commute. Of course, if the
families we are considering has no extra structures, then this is literally just
saying the maps are isomorphic. However, when we do have extra structures
on the structure morphisms, we will always have to impose the condition
that the structures be respected. The same is also true for the pullback
operation. The precise notion of what it means to respect these structures
depend heavily on the types of objects and types of structure, and they

8



1.3. The Moduli Functor

are defined on an ad-hoc basis. It is indeed often a non-trivial endeavor
to come up with the right definitions for these notions when tackling a
classification problem; and one can only get a good sense of what to look
for with experience.

Example 1.3 For example, the first moduli problem we will investigate con-
siders families of 4-tuples of points in IP!, then in fact a family of such objects
parametrized by B is the projection morphism 7t : B x P! — B together with
four sections: morphisms ¢; : B — B x P! that are disjoint. Thus in this
case the structure morphism is 7t while the sections are considered extra
structures. Now if there are two families over a common base B:

B x P! B x P!

oo 4 o[]
B B

then to say that these two bundles have the same data is to say two things:

1. The fibers are all the same, i.e. the maps are isomorphic, so there is an
isomorphism
@: BxP' - B x P!

making the following diagram commute:

BxP! — % . BxP!

T

2. The sections should all be compatible under this isomoprhism, so we
must have the following diagram commute for any 1 <i < 4:

BxP!l — %  , BxDP!

N, T

1.3 The Moduli Functor

The above notions and conditions of families, pullbacks, and equivalence of
families can all be said succinctly by saying we have a contravariant functor:

F: Sch — Set
B +— {equivalence classes of families over B}



1.4. The Fine Moduli Space

This functor sends a morphism ¢ : B — B to a morphism of sets

F(B) — F(B')
[X/B] = [¢"X/B']

We will term the functor associated to our choice of objects, families, and
equivalence relations a moduli problem.

1.4 The Fine Moduli Space

Now that we have properly formulated the setting for a moduli problem, we
will now introduce how an “answer” to a moduli problem, in the form of
a scheme meeting some conditions, might be considered “good enough” to
be called a moduli space for the moduli problem. The first set of criteria we
will introduce is that of the fine moduli space, and represents the most strict
requirements for a scheme to be considered a satisfactory moduli space, and
in many respects whose existence is the best-case scenario.

The idea is that the fine moduli space should be a base scheme parametriz-
ing a family of objects such that it is “universal among all families”.

Definition 1.4 A universal family for a moduli problem F is a family U/M
such that for any family X /B there exists a unique morphism x : B — M
such that x*U is equivalent to X as families over B. We call the base M a fine
moduli space for the moduli problem F.

There is an equivalent, categorical formulation of this definition. In terms of
representable functors.

Definition 1.5 (Functor of Points) Let C be a locally small category (e.g.
Sch), and Y € C an object. Define the functor of points as the contravari-
ant functor

hy: C — Set
B — Homc¢(B,Y)

p:B > Bl [55 pog]
where B € hy(B) = Homc¢(B,Y).

Theorem 1.6 (Yoneda’s Lemma) Let F : C — Set be a contravariant functor
from a locally small category C to the category of sets. Then for each object Y of C,
the natural transformations from hy to F are in bijection with the elements of F(Y),
i.e. there is a bijection

Nat(hy, F) = F(Y)

10



1.4. The Fine Moduli Space

which sends each natural transformation ¥ : hy — F to u = ¥(Y)(idy); and
given an object u in F(Y), the corresponding natural transformation is defined by

Y(f) = F(f)(u) for f € hy.

Definition 1.7 (Representable Functor) Let F be a functor F : C — Set,
where C is a locally small category, F is called representable if F is isomor-
phic to hy for some object Y in C.

By Yoneda’s lemma, in order to get a representation for the functor F, we
want to know when the natural transformation induced by an object u in
F(Y) is an isomorphism. So we introduce the following terminology:

Definition 1.8 (Universal Element) A universal element for the functor F :
C — Set is a pair (A, u) consisting of an object A of C and an element
i € F(A) such that for every pair (X, v) with X and object of C and v € F(X)
there exists a unique morphism (elementin 4 (X) = Hom(X,A)) f: X — A
such that F(f)(u) =v

The condition is equivalent to the assertion that p induces an isomrphism
Y : hy — F under the identification given by Yoneda’s lemma. Therefore a
functor F being representable by an object Y via an isomorphism ¥ : hy — F
is equivalent to the existence of the universal element (A, ). In this case we
can say the universal element (A, Y) represents F.

Proposition 1.9 A family U /M (with structure morphism ) is a universal family
for the moduli problem F if and only if the pair (M,Y) represents F, where we
identify y and Y via Yoneda’s lemma.

Proof Suppose that the moduli problem F is representable by a pair (M, ¥),
where M is a scheme and Y : hjy — F is an isomorphism of functors. Since
¥ is an isomorphism, for any scheme B and any element [X = B] € F(B),
there exists a unique ¢ € hy(B) = Hom(B, M) such that ¥(B)(¢)(a) = ¢.
We claim that the family A = ®(M)(idy) : U — M is universal. To show
that we must show that any arbitrary family X /B (with structure morphism
«) is a pullback of U/M along a unique morphism. We claim that this
unique morphism is ¢. To see that, we consider the commutative diagram:

idyy ¢*(idy) = idyop = ¢

¥ (M) (idpm) = A s F(g)(A) =¥(B)(¢9) =«




1.5. The Coarse Moduli Space

Now by definition of the pullback family along ¢, F(¢)(A) is the family
U xy B — B. Thus the equality on the lower right-hand corner asserts
that the arbitrary family X /B (with structure morphism «) is equivalent to
U x p B — B as families over B.

Conversely, suppose U /M (with structure morphism y) is a universal family.
The definition of universal family implies that for any pair (B, v) where B
is a scheme, and v : Z — B a family over B, then there exists a unique
morphism ¢ : B — M such that pulling back the universal family along
@ gives a family that is equivalent to Z/B. But this is equivalent to the
assertion that (M, u) is a universal element for F. Thus (A, ¥) represents
F. O

The next result is that the fine moduli space is unique up to unique isomor-
phism. As a result, the universal family for a given moduli problem, if it
exists, is unique up to equivalence of families.

Proposition 1.10 A universal family U /M for a moduli functor F, if it exists, is
unique up to equivalence of families over M. Therefore, a fine moduli space M is
unique.

Proof This is a direct consequence of the fact that the universal family is
defined via a universal property. O]

Thus we can speak of the fine moduli space for a moduli problem, if it exists.

Points of the fine moduli space Recall that our goal was to find the most
suitable scheme structure on the set S/ ~g. Indeed, geometric points of
the fine moduli space is in bijection with the isomorphism classes of objects:
by the definition of universal family, there is a bijection between the set of
equivalence classes of families over an arbitrary scheme B and the set of
morphisms B — M. Now if we take B = e = Spec(C) (in fact we can
take Spec(k) for any k a field, we really just need a one-point scheme), then
a family over e, i.e. a morphism S — e is just S and the equivalence of
families coincides with equivalence of objects; on the other hand morphisms
e — M are the geometric points of M. In other words the C-valued points
of M are in one-to-one correspondence with isomorphism classes of objects.
In particular if M happens to be something nice such as a variety, then
the closed points are in one-to-one correspondence with the isomorphism
classes, which is what we intuitively would want to have.

1.5 The Coarse Moduli Space

It is in fact the case that the conditions for the existence of a fine moduli
space is too stringent in many cases.

12



1.5. The Coarse Moduli Space

The simplest way to immediately relax the conditions is to not insist on an
isomorphism of functors but rather just a natural transformation ¥ : hy — F.

Definition 1.11 (Coarse moduli space) A coarse moduli space for a moduli
functor F is a pair (M, v) where M is a scheme and v : F — ) is a natural
transformation such that

1. (M, v) is initial among all such pairs (defined precisely below).
2. The set map v(e) : F(e) — Hom(e, M) is a bijection.

That (M, v) is initial means that given any other pair (M’,v") where v’ :
F — hyp is a natural transformation, there exists a unique morphism of
schemes ¥ : M — M’ such that, if we denote by ¥ : hy; — hyy the natural
transformation induced by i under Yoneda’s lemma, we have v' = ¥ o v. In
other words, every natural transformation F — hy factors uniquely through
v.

It is in by last fact that we are able to say that /1) is the representable functor
“closest” to F.

As one may expect, a fine moduli space is a coarse moduli space, if it exists.
This is a simple fact, tave v = ¥~ where ¥ is the isomorphism of functors
associated to the fine moduli space.

Another unsurprising fact is that a coarse moduli space is unique up to
unique isomorphism, and in fact only Condition 1. in the definition is
needed to show this:

Proposition 1.12 If a coarse moduli space for a moduli functor F exists, then it is
unique up to unique isomorphism.

Proof As before, condition 1. is a statement that (M, v) satisfies an initial
property, i.e. an universal property. O

Remark on this definition The above definition of the coarse moduli space
is not what one would find in the literature. The term coarse moduli space is
a much more general object that is defined for together with a stack. Stacks
are very roughly, a class of objects that are an enlargement of the category
of schemes. In fact, a stack is a functor, with some other stuff. We won’t
go into more detail to try to explain any of this, all that matters is that one
should be mindful of the use of this term in the literature, that the coarse
moduli space can be a much more general object in contexts that are more
general than ours.

13



Chapter 2

The Moduli Space of Pointed Curves

This chapter concerns the construction of the fine moduli space to the mod-
uli problem of classifying projective rational curves with n marked points
up to isomorphism that respects the marked points.

To begin with, we first look at the special case of projective smooth rational
curves, which we will prove are all isomorphic to P!. Thus isomorphism
classes of projective smooth rational curves with n marked points are equiv-
alent to isomorphism classes of automorphisms of P! that respects an extin-
guished n-tuple of marked points. A construction of the fine moduli space
classifying marked projective smooth rational curves, denoted My, will be
given. We will then give the statement (without proof) from Knudsen [10] of
the existence of a fine moduli space classifying n-pointed projective rational
curves with a certain stability condition imposed, again up to isomorphism
respecting the marked points. This space, denoted M , will contain My, as
a dense open subset, and thus is an instance of a compactification of a moduli
space.

Throughout this article, we use the following definition of IP":

Definition 2.1 The complex projective r-space is the set of all lines through the
origin in C'*!. Equivalently, it is all the points in C""! where we identify
points which are non-zero scalar multiples of each other. Thus we can rep-
resent a point in IP” by an r + 1 tuple called its homogeneous coordinate. Of
course, the homogenous coordinate of a point is not unique, any non-zero
scalar multiple of one is also a homogenous coordinate of the same point.

The complex projective line IP! is the simplest example of a projective curve.

14



2.1. Classifying n-tuples up to Projective Equivalence

2.1 Classifying n-tuples up to Projective Equivalence

Definition 2.2 Consider a pair of ordered n-tuples

p=(p1,-- Pn)

q="(q1,---,qn)

in P! with distinct entries, i.e. p; # p; and q; # gq; for any i # j. We
say that p and q are projectively equivalent if there exists an automorphism
@ : P — P! such that ¢(p;) = g; forevery i =1,...,n.

Unless otherwise noted, an n-tuple will be an n-tuple in P! with distinct
entries.

Our goal is to construct a fine moduli space for the moduli problem of
classifying n-tuples up to projective equivalence. In order to do so we must
specify our notion of families of n-tuples, and a notion of equivalence of
families.

At the moment we will restrict our attention to the particular case where
n = 4. The reason is that one can move up to three points under an auto-
moprphism of P! to any desired points. As such, for 3-tuples there is only
one equivalence class. Naturally, the case for n = 4 is the first non-trivial
case, and we shall see that once we have constructed the fine moduli space
for this case, it is not difficult to generalize to arbitrary n.

We will give a special name for a 4-tuple, for no other reason but conve-
nience.

Definition 2.3 A quadruple of points in IP! is an ordered tuple of four distinct
points p = (p1, p2, p3, pa) in PL.

Proposition 2.4 The set of all quadruples
Q =P' x P! x P! x P'\ diagonals
form an algebraic variety, thus in particular it has a scheme structure.

By diagonals we mean any pair of entries with the same value, which is not
allowed by our definition of quadruples.

Proof The space P! x P! x P! x P! has the structure of a quasi-projective
variety by the Seagre embedding. The diagonals are closed subsets, thus Q
is a quasi-projective variety. O

Definition 2.5 Two quadruples p and p’ are called projective equivalent if
there exists an automorphism ¢ : P! = P! of the projective line such that
¢(pi) = p; for every i =1,2,3,4.

15



2.1. Classifying n-tuples up to Projective Equivalence

We are interested in classifying quadruples of points in P! up to projective
equivalence. In particular we would like to seek a scheme that can be natu-
rally identified with the set of equivalence classes. In other words, we would
like to pose a moduli problem F : Sch°’P — Set. We will need to define the
proper notion of families, and a proper equivalence relation on families.

Definition 2.6 (family of quadruples) A family of quadruples (over a base
scheme B) is the following diagram/collection of morphisms:

where 77 : B x P! — B is the projection, and the four sections
o,:B—>BxP!, i=1,234
are disjoint, i.e. over each geometric point b € B,

0j(b) # o(b) if j # K

We can view this diagram as such: Over each point b € B, the fiber of 7 is a
copy of the whole projective plane P!, while the sections ¢; single out four
distinct points. Therefore, the fiver over each point in B corresponds to a
quadruple.

Family of quadruples as a morphism In our case the structure morphism
is 7T while the sections are “extra structures”.

Now we specify our notion of equivalence of families.

Definition 2.7 Two families of quadruples over a fixed base scheme B:

B,01,02,03,04) and (B,o!,05,0%,04) are equivalent if there is an automor-
1/92,03,04 q

phism of schemes ¢ : B x P! — B x P! making the following diagram

commute fori =1,2,3,4:

BxP! —? 5 BxP!

Now that we have defined families of objects, and a compatible notion of
equivalence of families, we need the notion of pullbacks. Pullbacks of fam-
ilies will be given by fiber products, but care must be taken in specifying
what happens to the sections when we form the fiber product.

16



2.1. Classifying n-tuples up to Projective Equivalence

Definition 2.8 (pullback family of quadruples) Let B x P! 5 B (with its
sections 0;) be a family of quadruples. Let ¢ : B — B be a morphism of
schemes. Then we have the following diagram:

B xgP! =B x5 B x P! 22" Bx P!

PWlTW°¢ HJTW
B ? B

where pp, p1 and pp are the unique maps associated to the fiber product.

Now consider the map o; o ¢, and using the universal property of the fiber
product, we have the following commutative diagram:

vicg

B/
y

Pexpl
B xz P! 2% B x P!

| |

B—% B

id

in this way we can define sections ¢; : B’ x B’ xp PL.
Then the pullback family of B x P = B along ¢ will then be the following
portion of the above diagram:

B’ x P!

Py l}/’
B

where we identified B’ xg B x P! = B’ x P!. Thus the pullback family
is a family B’ x P! ¥, B’ with sections P, ie. ppoy; = idp for every
i =1,2,3,4. The sections are disjoint by the disjointness of the sections ¢; in
the original family.

By abuse of notation, we will denote i as simply o o ¢. Thus we may rewrite
the pullback family we have just defined to be

B’ x P!

PB’lTUiO(P
B/

We will do this for families of other objects in later parts of this paper and
their pullbacks whenever there are sections involved.

17



2.1. Classifying n-tuples up to Projective Equivalence

Now we have all the necessary ingredients to define the moduli problem of
classifying quadruples in IP! up to projective equivalence.

The following proposition will be important in describing the isomoprhism
classes of quadruples.

Proposition 2.9 Given any triple of distinct points p1, p2, p3 € P, there exists a
unique automorphism ¢ : P1 — P! such that

p1—0, po—1, p3r— o0

Proof We first consider the case that all three points are finite. Then we can
write them in terms of homogeneous coordinates as

=[] m=[] »=[3)

[Z b} € PGL(2)

Let

d

Then p; is sent to 0 = {0

1] if and only if b = —ax;. Also, p3 is sent to

00 = [(1)} if and only if d = —cx3. Lastly, p issent to 1 = [ﬂ if and only if

axpy — axq 1
CXy — CX3 '
Since we assume that the points are distinct, xp # x3 thus we can re-write

this as
X2 — X3

Xy — X1

a=c

Now we notice that a,c # 0. If they are both zero then the matrix will have
determinant zero, thus not it will not represent an automoprhism. On the
other hand, if 2 = 0 then b = 0; if ¢ = 0 then d = 0, both cases will also
force the matrix to have zero determinant. As such, we can assume c = 1 by
re-scaling, to obtain

X2 — X3

a Xy — X2

By the above argument we conlcude that an automorphism (Z Z) gives
the desired result if and only if

X2 — X3
a= , b=—ax;, ¢c=1, d= —cx3
X2 — X2

(up to scaling by a constant). Such a matrix obviously exists, thus is con-
cludes the proof for the case that all three points are finite.

18



2.1. Classifying n-tuples up to Projective Equivalence

Now we suppose that one of the three points is the point at infinity. Then

there are three cases: (As before, let (Z Z) € PGL(2))
1. p1 = 0.
The matrix sends p; = 00 = [961] to 0 if and only if 4 = 0. The matrix

sends p3 = 1 = [%3] to co if and only if d = —cx3. Lastly, the matrix

X2

sends py = [1

} to 1 if and only if

b=c(xy— x3)

But as before, it suffices to assume ¢ = 1 to obtain b = x», — x3. There-
fore the unique automorphism is

0 Xy — X3
1 —X3
2. p2 = 0.

The matrix sends p; to 0 = [1

0] if and only if b = —ax;. Also, the
matrix sends p3 to oo = [(ﬂ if and only if d = —cx3. Lastly, the matrix

sends py = o0 = [(ﬂ tol = [ﬂ if and only if ax; = cxp, ie. a = c.

And since we cannot have both a and ¢ be zero, it suffices to assume
a = ¢ = 1. Therefore the unique automorphism is

1 —X1
1 —X3

X3
0

3. p3 = oo.
The matrix sends p3 = 00 = [ ] to itself if and only if ¢ = 0. Also, the
matrix sends p; to 0 = [(1)] if and only if b = —ax;. Lastly, the matrix

sends pp to 1 = E] if and only if

a(xp—x1) =d
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2.1. Classifying n-tuples up to Projective Equivalence

but a cannot be zero, otherwise b will be zero which will force the
matrix to have determinant zero. Therefore it suffices to assume a = 1
to obtain d = x, — x1. Therefore the unique automorphism is

1 —X1
0 x—x1 O

With this result in mind, we can give the following definition.

Definition 2.10 Let p = (p1, p2, p3, pa) be a quadruple, and let ¢, denote
the unique automorphism on P! that sends p; + 0, p2 — 1, p3 — . Then
the value A(p) := ¢,(ps) € P! is called the cross-ratio of p.

It is clear from the definition of automorphism that A(p) # 0,1, co for any
quadruple p.

Corollary 2.11 Every quadruple p is projectively equivalent to (0,1, 00, A(p)).
Therefore two quadruples are projectively equivalent if and only if they have the
same cross ratio.

Proof Follows immediately from Proposition 2.9 and Definition 2.10 O

As a consequence, the fine moduli space classifying all quadruples up to
projective equivalence, if it exists, its closed points must be in a natural
bijection with P!\ {0,1, c0}.

2.1.1 Existence of the fine moduli space classifying quadruples

Theorem 2.12 The variety
M0,4 = lPl \ {O, 1,00}
is a fine moduli space for the classification of quadruples up to projective equivalence.

Proof We will prove the result by constructing a universal family over M 4.
The family we will construct is the so-called tautological family over Mya,
which is a family with the property that the fiber over any g € My4 is a
quadruple (specified by the values of the sections) with cross ratio 4. The
(claimed) universal family is the diagram

MO,4 x P!

] T
Mo
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2.1. Classifying n-tuples up to Projective Equivalence

where the first three sections are constant maps with values 0,1, and oo, and
the fourth section sends a point to itself. Let

B x P!

be an arbitrary family of quadruples. Define the morphism ¢ : B — M4 by
the following composition of morphisms:

B — P! x P! x P! x P!\ diagonals — Aut(IP') x P! — My, = P!\ {0,1,00}

b= (01(b), 02(b), 03(b), 04 (b)) = (&, 04 (b)) — a(0a(b)) = A(ou(b))

where « is the unique automorphism that sends (o1 (b), 02(b), 03(b)) to (0,1, 00).
Then the pullback of the tautological family along ¢ is by definition the fol-
lowing family over B:

B x P!

dl BmTa

where (; is the map given by the universal property of the fiber product
from B to B x P!

Tiog

3

s 1 Py 1
B XB rt— M0,4 x P

PBl pMUA lTTl‘
9

B ——— My,

idp

From this diagram we can also get a description of what the sections {; are.
First, from the lower-right square (i.e. the fiber diagram) we must have that

Py, =Pt = (¢, idp1)

thus in order to have {; o py;  .p1 = T © ¢ we must have
Zi(b) = (b, (e(b))) (2.1)

(by 7i(¢(b)) we mean the second component of the image of ¢(b)).

We claim that the pullback family is equivalent to the family (B, ;). To
show this, we need to show the existence of an automorphism of B x P!
that respects the two families and their sections.
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2.1. Classifying n-tuples up to Projective Equivalence

We define the automorphim

¥: Bx P! — Bx P!
(b, p) — (b, ¥p(p))

where ¥, is a morphism on P! defined by

p=0

1 =1

¥p(p) = P_
(00] p—OO

T4(A(ps)) otherwise

Since the projection maps on the two families are the same, we only need to
check that the sections are respected by the automorphism. That is, we need
to show that following diagram commutes for all i = 1,2, 3, 4:

BxPl —— %  , BxP!

RN

Using the description of {; (2.1), we have the explicit mappings

(b,0i(b)) (b, (e
\—>/

Then it is straigtforward to check using the definition of ¢ that this diagram
commutes for every i.

It remains to check that the morphism ¢ is unique among all such mor-
phisms with the pullback property. However, this follows from the way we
defined b: the image of a point b is the cross ratio of the fiber over b. This
clearly determines x completely if it exists.

This shows that M4 which is the base of the universal family is a fine mod-
uli space for the moduli problem of classifying quadruples up to projective
equivalence.
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2.1. Classifying n-tuples up to Projective Equivalence

2.1.2 Generalizing to n-tuples

We will now generalize the result to obtain the fine moduli space for the
classification of n-tuples up to projective equivalence, where n > 4. The
definitions of family of quadruples and their equivalence are easily extended
to the case for n-tuples.

First, the notions of families of n-tuples, their equivalence, all related notions
of the moduli problem is the same for the case of quadruples. Be aware that
each moduli problem considers a fixed n > 4.

Theorem 2.13 For n > 3, the fine moduli space for the moduli probelm of classify-
ing n-tuples in P! up to projective equivlance is

Moy = Moa X -+ X Moa '\ Udiagonals

(n—3) factors

Proof The proof is almost exactly the same for the case of quadruples.

We claim the the following family defines a universal family:

MO,n X ]Pl

P MO,n lTTt

MO,n
where the sections 7;, 4 > i > n are the projections from the (n — 3)-fold
product to its factors My, C PL.

Let
B x P!

psgm

be an arbitrary family of n-tuples in P! over the base scheme B. Define the
unique morphism
(S B — MO,n

which is defined by the following composition of maps

B—Px--- xPl\Udiagonals—)Aut(lPl) x Pl x - x P! — My,
——— ———

n factors (n—3) factors

defined by

b (01(b),...,00(b)) — (a,04(b),...,04(b)) — (a(0a(b)),..., a(0,(b)))
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2.2. Classifying Pointed Smooth Rational Curves up to Isomorphism

where « is again the unique isomorphism sending the first three section to
0,1, co respectively.

The the pullback along ¢ of the (claimed) universal family is the following
diagram:

B x P!
e
B

where (; is as before obtained from the universal property of the fiber prod-
uct.

We claim that this pullback family along v is equivalent to the family B x

P! 2 B (with its sections ¢;). Indeed, define the automorphim

¥: Bx P! — B x P!
(b,p) = (b, ¥u(p))

where
0 p=0
1 =1
Yu(p) = p_
(0,0] p—OO

T4(A(ps)) otherwise

It is then again straightforward to check that ¥ gives an isomorphism of
families. O

2.2 Classifying Pointed Smooth Rational Curves up to
Isomorphism

A projective smooth rational curve is isomorphic to IP!. Thus a projective
smooth rational curve with n marked points is nothing but a copy of P!
with n marked points. We will show that the moduli problem of classifying
n-pointed projective smooth rational curves up to isomorphism that respects
the marked points to be the same as classifying n-tuples up to projective
equivalence. We will have a slightly different definition of families of such
objects than the one we had for tuples, but we will show that every family
we define here is equivalent (as families) to a family of the form we defined
in the previous section, i.e. a morphism whose source is the product of the
base with IP!. Thus justifying what we mean by these moduli problems are
the same.

Definition 2.14 An n-pointed projective smooth rational curve is a projective
smooth rational curve C together with n distinct marked points p1, ..., pn € C.
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2.2. Classifying Pointed Smooth Rational Curves up to Isomorphism

We denote an n-pointed curve by

(C/pll' . -/Pn)

Definition 2.15 An isomorphism of n-pointed projective smooth rational curves

¢:(Copreepn) = (CLpL . )

is an isomorphism ¢ : C = C' that respects the marked points, i.e. ¢(p;) =
pi,fori=1,...,n.

Thus we see that the definition resembles that of projective equivalence, es-
pecially if we consider the curve C as just a copy of P! (by copy we mean
they are isomorphic as varieties).

As all curves that we shall be considering are projective, we suppress the
word projective when speaking of them. We will however keep the adjectives
smooth and rational as they are not only crucial properties to keep in mind
but also in anticipation that we will consider non-smooth and non-rational
curves later.

Definition 2.16 A family of n-pointed smooth rational curves (over a base scheme
B) is a flat, proper morphism of schemes 77 : X — B with n distinct sections
0; : B — X such that each fiber 7771(b) is isomorphic to a smooth rational
curve. By sections we mean maps o; such that 77 o 0; = idg. That is, a diagram

We can see from this definition that the sections over a point b € B single
out 7 distinct points in the curve 777! (b), making the curve into an n-pointed
curve.

We also need a notion of equivalence of families:

Definition 2.17 Two families of n-pointed smooth rational curves over a
common base scheme B:

7 : X — B with sections ¢;, and 7’ : X’ — B with sections ¢

are said to be equivalent or isomorphic if there exists an isomorphism ¢ : X —
X' such that the following diagram commutes for eachi =1,...,n:

X — X
i
B——8B
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2.2. Classifying Pointed Smooth Rational Curves up to Isomorphism

We still need to define the pullback of a family along a morphism. This
will unsurprisingly be given by the fiber product, and sections given by the
universal property of the fiber product.

Definition 2.18 Let 7 : X — B be a family of n-pointed smooth rational
curves with sections 0;, and ¢ : B — B be a morphism. Then the pullback
family along @ is the family

B/XBX

PB’\LTQ
B

where as before the sections {; are the unique maps from B’ to B’ xp X given
by the universal property of the fiber product.

We will show that the moduli problem of classifying n-pointed smooth ra-
tional curves up to isomorphism is equivalent to the moduli problem of
classifying n-tuples in P! up to projective equivalence. Hence justifying our
treatment of the latter moduli problem in the previous section. In particular
the fine moduli spaces we constructed for n-tuples will also be the appropri-
ate fine moduli spaces for classifying n-pointed smooth ratoinal curves.

As mentioned before, the key to this equivalence is that projective smooth
rational curves are the same as IP!. We first establish this fact:

Proposition 2.19 (Moraru [12] Corollary 1.3.5) Any projective smooth rational
curve C is isomorphic to PL.

Proof It suffices to show that any rational map ¢ : C — P! is a morphism
(this fact is actually also more generally true where the target space is IP"
for any n). We use the fact that C can be embedded in IP" for some n.

By definition of a rational map, we can write the value of ¢ at a point [x7 :
-+t Xy41] where ¢ is defined, viewed as embedded in IP" as:

QD(Xl Ll an) = [Fl(xl, .. .,xn+1) : Fz(xl, .. -/xn-i-l)]
where Fj, F, € K(C) = C|xy, ..., X,+1] are homogeneous polynomials.

Now let p = [y1 : - - : Yn11] be any arbitrary point on the curve (not neces-
sarily in the domain of ¢), we will show that F; and F, do not vanish at p,
thus showing that ¢ is in fact a morphism. By assumption C is smooth. We
know that a projective curve C is smooth at a point p if and only if the local
ring Oc,, of p is a discrete valuation ring (DVR) (Moraru [12] Proposition
1.2.13). Therefore the functions F;, F, € Oc, C K(C) are in a DVR. So we
can use properties of DVR to write

Fi = tkfuz-
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2.2. Classifying Pointed Smooth Rational Curves up to Isomorphism

where t € Oc,p is a fixed uniformizer, k; € Z, and u; € Oc,, are units. After
a possible change of coordinates, we may assume that k; < k. Then

oW1 ywn) = Ay Y1) B Yns)]
= [Mur(yr, . 1) 2u2(y, - Ynsr)]
— 11 Yus1) B2y, )]
The first component is non-zero at p since u; is a unit in Ocyp, and the

second component is non-zero since uy is also a unit in Oc, and #;, < ty,.
This proves the desired result.

Therefore we can conclude that any birational equivalence between C and
P! will in fact be an isomorphism. O

The following key proposition establishes the fact that any family of n-
pointed smooth rational curves 7t : X — B (with sections 0;) is isomorphic as
families to a family of the form B x IP! — B (with apprpriate sections). Un-
fortunately, we are unable to provide the proof, which is beyond the scope of
this paper. According to our main source material, it is a slight modification
of the proof of Proposition II1.2.2 of Hartshorne [7].

Proposition 2.20 Let 7t : X — B be a family of n-pointed smooth rational curves
(with sections ;). Then there is a unique isomorphism ¢ : X — B x P! making
the family isomorphic to a family of the form

B x P!

L T

where the first three sections are the constant maps

’)q(b) =0, ’)/z(b) =1, ’)/3<b> =o0, VbeB
called the trivial family. The name should remind one of a trivial bundle.
Thus we can immediately conclude

Corollary 2.21 For n > 3, classifying n-tuples of distinct points in P up to
projective equivalence is equivalent to classifying n-pointed smooth rational curves
up to isomorphism.

Theorem 2.22 (Existence and Description of My ,) For n > 3, there is a fine
moduli space, denoted by My, for the moduli problem of classifying n-pointed
curves up to isomorphism, given by the following:

1. My is a single point.
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2. M0,4 = 1131 \ {0, 1,00}.

3. Forn >4,
Moy = Mog x - -+ x Moy \ | diagonals

(n—3) factors

Proof Due to Corollary 2.21, much of the work has already been done. From
Theorem 2.12 and Theorem 2.13 we get 2. and 3. respectively. As for My 3, we
know that there is only one equivalence class of 3-pointed smooth rational
curves, therefore the moduli space is a single point. It is then trivial to verify
that any family of triples is the pullback of the trivial family over a single
point. O]

2.3 Compactifying M,

In general the moduli spaces My, we have constructed are not compact.
For the purpose of studying the intersection theory on these moduli spaces,
there is a need to compactify them. This will be done by adding additional
points to the moduli space, in such a way that our moduli space becomes
a (larger) moduli space for classifying a class of objects which are slight
generalizations of n-pointed smooth rational curves, in such a way that My,
is contained as a dense subset. This larger class of objects will be the so-
called stable n-pointed rational curves (which are not necessarily smooth).

We begin by dropping the smoothness condition we have been imposing.

Definition 2.23 An n-pointed rational curve is a projective rational curve C
together with n distinct marked points p1,. .., p, € C, denoted by

(C/plz---/Pn)

The notions of isomorphism of curves is still the same, i.e. an isomorphism
of n-pinted rational curves is an isomorphism of curves that respects the
marked points.

Next we identify a special class of rational curves called a tree of projective
lines:

Definition 2.24 A tree of projective lines or genus-0 nodal curve is a connected
curve with the following properties:

1. Each irreducible component is isomorphic to PL.

2. The points of intersection of the irreducible components are ordinary
double points.
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2.3. Compactifying My,

3. There are no closed circuits. That is, of a node is removed, the curve
becomes disconnected. Equivalently, if  is the number of nodes, then
there are J + 1 irreducible components.

An irreducible component of a tree of projective lines will be called a
twig.

When we say ordinary double point, we mean that locally at the point of
intersection, the curve is complex analytically isomorphic to a neighborhood
of the origin in the zero-locus defined by the equation xy = 0 in C2.

We will drop the prefix “genus-0” since we will not be considering higher
genus curves.

Now we can define the central object of interest for this section, stable curves,
which are trees of projective lines with conditions on the marked points and
nodes:

Definition 2.25 Let n > 3. A stable n-pointed rational nodal curve is a nodal
curve (C,p1,...,pn) with n distinct marked points that are smooth points
of the curve C, such that every twig contains at least three special points.
A special point is a marked point or a node, i.e. a point of intersection with
another twig.

Thus a stable n-pointed rational nodal curve is in particular an n-pointed
rational nodal curve, which is also obvious from the terminology.

Again, The notion of isomoprhism of curves still holds for stable n-pointed
rational nodal curves: all is needed is the isomorphism respect the marked
points.

We will drop the words “rational” and “nodal” from now on, since all the
curves we will be considering are rational, and we will indicate specifically
when we are only considering smooth curves.

An automorphism of an n-pointed curve (with or without being stable or
smooth) (C, p1, ..., px) is an isomorphism ¢ : C = C that fixes each marked
point. We will call a stable n-pointed rational curve automorphism-free if the
identity is the only automorphism.

The term stable refers to the characteristic of being automorphism-free. The
following proposition will justify this terminology by showing that stability
as we have defined using special points is equivalent to the condition that
the curve is automorphism-free.

Proposition 2.26 An n-pointed curve is automorphism free if and only if it is a
stable n-pointed curve.

Proof Let ¢ be an automorphism of a stable n-pointed stable curve
(C/ pll . '/pi’l)
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Since it fixes each marked point, in particular it must map each marked
twig onto itself. Every twig with just one node must be a marked twig,
and since the node is the only non-singular point, the node is a fixed point
and that the adjacent twig (the other one attached to the node) is mapped
onto itself as well. By induction on the twigs this shows that each node is
a fixed point and that each twig is mapped onto itself. This shows that ¢
restrcited to any twig must be an automorphism of P! that fixes the special
points on the twig. Suppose there exists a non-trivial automorphism 1 of
an arbitrary twig, then such an automorphism will also has to fix the three
special points, but this will contradict Proposition 2.9, which says that there
is a unique automorphism on P! that moves three or more points to a a
designated target. Specifically, if ¢ is the unique automorphism of the twig
that sends three special points to 0,1, co, then ¢ o ¥ is also a automorphism
that sends the three points to 0,1, co that is distinct from ¢ (by assumption
that ¢ is non-trivial), contradicting the uniqueness of ¢. Thus we conclude
that ¢ restricted to each twig is the identity (i.e. trivial automorphism), thus
@ itself is trivial. O]

Enlarging the class of objects An important observation to make now is
that a smooth rational curve with 3 or more marked points is stable (as an n-
pointed rational curve). This directly follows from the fact that there exists a
unique automorphism on P! that sends three distinct points to 0, 1, co respec-
tively. Thus for n > 3 we can consider the moduli problem with an enlarged
class of objects which consists of stable n-pointed rational curves, containing
n-pointed smooth rational curves as a subset. Since the equivalence relation
on the objects remains the same as we defined before, we should expect that
if a moduli space exists for this moduli problem, it should contain My, as a
subset.

Indeed this turns out to be the case; but more is obtained from this particular
enlargement of the class of object. We actually get a fine moduli space My,
for this (larger) moduli problem that is in fact the compactification of My,
i.e. My, is contained as a dense subset of Mg ,. This fact is established by
a theorem by Knudsen. In essence the enlargement of the class of objects
to stable rational curves is the ideal augmentation to the moduli problem to
compactify M.

Before we state the existence of Mj,, we must formally state the mod-
uli problem by defining the notion of families of stable n-pointed rational
curves and the equivalence relation on them. The almost identical defini-
tions with those for pointed smooth rational curves should not come as a
surprise. In particular we must make sure that when restricted to smooth
cases (i.e. if we take these definitions but only consider smooth n-pointed
rational curves), we get exactly the same definitions as those in the previous
section.
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2.4. The Forgetful Map

Definition 2.27 A family of stable n-pointed curves (over a base scheme B) is a
flat and proper morphism 7 : X — B equipped with n disjoint sections, such
that every geometric fiber X;, = w~1(b) is isomorphic to a stable n-pointed
curve. In particular the sections are disjoint from the singular points of the
fibers.

Definition 2.28 Two families of stable n-pointed curves over a common base
scheme B:

7 : X — B with sections ¢;, and 7’ : X’ — B with sections ¢

are said to be equivalent or isomorphic if there exists an isomorphism of n-
pointed rational curves ¢ : X — X’ such that the following diagram com-
mutes foreachi=1,...,n:

The pullback operation of families along a morphism is identical to the case
for unstable n-pointed curves.

And now we state the theorem of the existence of My, due to Knudsen.

Theorem 2.29 (Knudsen [10]) For each n > 3, there is a fine moduli space Mo,
for classifying stable n-pointed rational nodal curves up to isomorphism. In addition,
Mo, is a smooth variety, and it contains the subvariety My, as an open dense
subset.

A note on more general cases It is in fact possible, more general, to con-
struct the spaces Mg, and M, , which classify higher genus nodal curves,
and their compactification. See [1] for detailed constructions. The com-
pactifications are also done by imposing stability conditions. The stability
condition for higher genus curves is very similar to what we have defined
for genus-0 curves, with only a slight modification.

2.4 The Forgetful Map

For the space MO,nH, we want to find a natural map to Mo,n that consists of
dropping one mark from each curve. Such a morphism indeed exists, but
we will only give here a brief description on how it acts on the marks and
twigs, and not the proof of its existence.

Consider a curve in this space, if we were to take away a mark on this curve,
there is a possibility that the curve may become unstable. Thus we have to
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2.4. The Forgetful Map

stabalize it by removing or adding twigs. First, suppose we want to forget
the mark p,1, then there are two cases :

1. If p,41 is on a twig without other marked points, and with just two
nodes, then this twig is contracted:

R

2. If pyy1 is on a twig with just one other marked point p;, and only one
singular point (the point where the twig is attached to the rest of the
curve), then the twig is contracted an the point where the twig was
attached acquires the mark p;:

— —
pi pi

Of course if dropping p,+1 does not affect the stability of the curve then
nothing is changed other than the dropped point. The technical details of
this process is encoded in the following proposition from Knudsen’s paper
[10], of which the proof we will not give:

Proposition 2.30 (Knudsen [10]) Let (X'/B,01,...,0,0,_ ) be a family of sta-
ble (n + 1)-pointed curves. Then there exists a family (X/B,0y,...,0,) of stable
n-pointed curves equipped with a B-morphism ¢ : X' — X such that

1. ool =0, fori=1,...,n;

2. for each b € B, the induced morphism Xj — X, is an isomorphism when

restricted to any stable twig of (X;,07(b),...,05,(b)), and it contracts an

eventual unstable twig.

The family (X/B,0,...,04) is unique up tp isomophism, and we shall say that
it is the family obtained from X'/B by forgetting o, ,,. Furthermore, forgetting
sections commutes with fiber products.

Our description of how twigs contract to stabalize the curve when forgetting
marks is a set theoretical description of what the curve is mapped to, while
the above technical proposition ensures that we actually have a morphism

€. MO,H-H — MO,n
which we will call the forgetful map.

By composing forgetful maps, we can also drop as many points as we want.

32



2.5. The Boundary of Mg,

2.5 The Boundary of M,

The fact that the fine moduli space My, contains My, as a dense subset,
i.e. Mo, is a compactification of My, is central to our purposes in proving
Kontsevich’s formula. It allows us to apply intersection theory properly
on this compactified space. To that end, it is important that we study the
boundary My, \ Mo,-

For convenience we will refer to the points in M, as curves, rather than the
more precise “equivalence classes of curves”. It should be clear from context
we are speaking of an equivalence class, rather than a specific curve.

The next proposition gives us the description of the boundary. Consider
our construction of the class of objects, which are stable n-pointed rational
curves. They are trees of projective lines with additional conditions on the
marked points. Now the collection of the equivalence classes of the objects
Mo,n contains My ,, which consists of curves which are n-pointed smooth
rational curves, i.e. irreducible curves. As such, the boundary Mg, \ Mo,
should consist of only reducible stable n-pointed rational curves:

Proposition 2.31 Each point in the boundary of My, is a reducible stable n-
pointed curve. Conversely, any reducible stable n-pointed rational curve is in the
boundary.

Proof Any stable n-pointed curve C that is irreducible must be isomorphic
to P! by our definition of tree of projective lines. Therefore C must be an
n-pointed smooth rational curve, i.e. C € My ,. Thus any point in the bound-
ary is reducible. Conversely, every point in My, is an (irreducible) stable
n-pointed smooth rational curve, which is not isomorphic to any reducible
curve, Therefore any reducible curve is in the boundary. O

For a fixed number n of marked points, due to the stability condition im-
posed on the possible placement of marked points, there are only a finite
number of configurations of stable n-pointed rational curves in. The key
is that if there are too many twigs, then there will not be enough marked
points to ensure each twig has at least three marked points. Consequently,
there is a finite number of ways the twigs can be put together, plus a finite
number of ways to permute the marked points to get a combined finite num-
ber of so-called “stratifications” of the space M . In particular the points
of the boundary M, \ My, are the stratifications which consist of reducible
curves.

This notion is best illustrated by an example:

Example 2.32 The following are the possible configurations of 6-pointed sta-
ble rational curves. The number next to each diagram indicate the number
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2.5. The Boundary of M,

of ways to label the marked points

/'/1

15 /'/><'\10
45 >6\60
is W%

Definition 2.33 We will call the (Zariski) closure of each stratification (i.e.
each collection of curves/each diagram in Example 2.32) a boundary cycle.
The name is chosen to reflect the fact that it has the structure of a subvariety,
thus it can be trivially viewed as a formal linear combination of subvarieties
(with one component and coefficient 1).

oy

We will call the bonudary cycles with codimension 1 boundary divisors.
The terminology comes from intersection theory.

Proposition 2.34 The subset ¥.5 of M , consisting of curves with § < n — 3 nodes
is of pure dimension n — 3 — 6.

We will delay the proof of this proposition until the end of this section.

Thus in the above example, there is one stratum of dimension 3, which
coincides with the dense subvariety Mys C Mye; 25 strata in dimension 2;
105 strata in dimension 1; and 105 strata in dimension 0.

As a consequence of the description of how limit points behave in M,
which we will not go into detail, the boundary of a boundary cycle consists
of boundary cycles of higher codimension, corresponding to configurations
that have more reducible components.

Thus a general point in a boundary divisor, which are boundary cycles of
codimension 1, should be a represented by a curve with two irreducible
components.

Let S = {p1,..., pn} be the marking set. We call S = A U B a partition of S,
where |A|,|B| > 2 and A, B disjoint.

34



2.5. The Boundary of Mg,

For each partition S = A U B, we can associate an irreducible boundary
divisor D(A|B). A general point on D(A|B) is a curve with two twigs, with
marks in A on one twig, and marks in B on the other twig.

That D(A|B) is indeed an irreducible and smooth variety is established in
Proposition 2.35 below.

Pulling back boundary divisor under forgetful maps Consider the forgetful
map - -
€: Mon+1 — Moy

and consider a boundary divisor D(A|B) from a partition AUB = S =
{p1,...,pu} in Mg,. The inverse image consists of two possibilities: the
extra mark g can be on the A-twig, or it is on the B-twig. Thus the pullback
divisor is the following

e*D(A|B) = D(AU{q}|B) + D(A|BU {g})

(see Lemma 1.7.1 of [5]). We will omit the justification that the coefficients
are 1. This involves a local description of the forgetful map given by Knud-
sen.

The following proposition establishes the description of the boundary di-
visor D(A|B)). The result implies it is the product of the moduli spaces
classifying curves with points on the A-twig and B-twig, respectively. In
addition, this also shows that D(A|B) is and irreducible and smooth variety
of codimension 1.

Proposition 2.35 Let S = A U B be a parition and x be an additional mark. Then
there is an isomorphism

D(A|B) = Mo augx X Mo

In particular, by the result of Theorem 2.29 on moduli spaces of stable curves, we
can conclude that D(A|B) is irreducible and smooth.

Proof A general point of D(A|B) is a reducible curve with two twigs, with
marks of A on one twig (call it the “A-twig”), and marks of B on the other
twig (call it the “B-twig”). Place the mark x on the intersection point of the
two twigs. Then the A-twig is an element of M, 4, () and the B-twig is an
element of M, 4, {x}- The stability condition of the twigs is equivalent to the
stability condition of the curve. Conversely, given an element in M, 4, (x} X
M, p{x}, We obtain a curve of the same configuration as before, identifying
the point x by attaching the two segments at this point. ]

35



2.5. The Boundary of Mg,

Justifying dimension count of Proposition 2.34 We generalize this argu-
ment to describe any boundary cycle as a product of moduli spaces M,
where the k;’s are associated to each twig.

Proof (PROOF OF PROPOSITION 2.34) We count the dimension by sum-
ming up the degrees of freedom of each twig, i.e. the freedom of moving
marked points and nodes. First, A curve with § nodes has § + 1 twigs. The
curve also has n 4 24 points, where we double the J since each node is a
special point on each of the two twigs that intersect it. The stability con-
dition ensures that there is at least three special points on each twig, and
there exists an automorphism sending these three points to 0,1, co. So three
of these points on the twig is spent for the automorphism, any remaining
special point will contribute an additional dimension. Thus in total, we have

dimYs =n+26-3(6+1)=n—-3-19¢ 0O

36



Chapter 3

Stable Maps and their Moduli Spaces

This chapter is concerned with the moduli problem of classifying morphisms
from a projective smooth rational curve to IP” for some fixed r > 1.

3.1 Maps P! — P’

Definition 3.1 Let y : P! — IP” be a morphism. We say that y is of degree d
if the local expression of y is given by

u: Pt — P’
[x0:x1]) ¥ [yo: -+t yn]

where each y; is a homogeneous polynomial of degree d:
d _—
Yi= E”ifx6x1 !
j=0

Subject to the condition that the y;’s do not vanish simultaneously at any
given point.

3.1.1 The Fine Moduli Space Classifying Maps of Degree d

According to Definition 3.1, to give a map u: P! — P” of degree d is to spec-
ify up to a constant factor, r + 1 binary forms (homogeneous polynomials in
two variables) of degree d, which are not allowed to vanish simultaneously
at any point. This condition defines a subset

W(r,d) Cc P (ErB H®(Op: (d))>

i=0
so by definition there is a bijection between W(r,d) and the set of all degree

d maps P! — P’. In fact W(r,d) is a Zariski open subset, thus endowing it
with the structure of a variety.
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3.1. Maps P! — P’

Lemma 3.2 The subset W(r,d) is a Zariski open subset, thus it is an algebraic
variety of degree rd + r + d.

Proof First, the conditions that the binary forms not vanish gives that W(r, d)
is Zariski open. There are (r +1)(d + 1) degrees of freedom in choosing the
binary forms. We subtract 1 degree from this because binary forms give the
same map in projective space if they differ by a constant factor. This gives
us (r+1)(d+1)—1=rd+r+d. O

We would like to find a moduli space classifying maps P! — P” of degree
d up to an equivalence relation to be defined shortly. The following propo-
sition asserts that W(r,d) classifies all maps P! — P’ of degree d as a fine
moduli space, where the equivalence relation is the trivial one, i.e. we clas-
sify maps up to uniqueness. Another way to think about this is that we
consider every map to be its own equivalence class. This should not come
as too much of a surprise, since W(r,d) is defined as the collection of such
maps to begin with, so the bijection with equivalence classes is clear. Further-
more, Lemma 3.2 above tells us that W(r,d) has the structure of a variety.
The fact that W(r,d) is such a moduli space is not particularly important
other than a useful fact we will use later when we construct the fine moduli
space classifying maps up to a non-trivial equivalence relation on the map.
in which we case we will make use of its universal family.

To begin with, we define the proper notion of a family for this moduli prob-
lem as the following:

Definition 3.3 A family of maps of smooth rational curves of degree d (over a
base scheme B with structure map ) is a diagram:

x . pr

|

B

such that for each b € B, the fiber C, := 7~ 1(b) is isomorphic to P!. There-
fore the the map y restricted to the fiber Cy:

plo, : X = P’

is a map from P! to IP". We also impose that this map must be of degree d.
In fact, it can be shown that all y;, must have the same degree, but we will
not give the proof here.

To specify a family defined this way is equivalent to defining a morphism

X —BxP
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3.1. Maps P! — P’

This can be easily seen from the diagram. We shall use these two conven-
tions interchangeably. Note that this morphism is not the structure map
of the family; the structure map is 77, which is the first factor of the above
morphism, while y is the “extra structure on the structure map 7.

Eqiuvalence of families Since each of the objects we are classifying is of
a distinct equivalence class, the equivalence of families is the obvious one:
any two families over a common base scheme B:

x 2, o pr
and .
x' Z4, g pr
are equivalent if and only if for each b € B, the following equality of maps

holds:
p( (b)) = p/ ('~ (b))

The pullback family Suppose

X 1 pr

T

B

is a family, and ¢ : B" — B, then the pullback of the family along ¢ should

be the fiber product with structure map B’ xp X P¥. B/, Thus we have the
following diagram:

B xpX Py x L, pr

w

B —% B

then the extra structure on the structure map pp' is given by the composition
u o px. Thus, the pullback family is the following:

o]
B xp X =X, pr

Py l

Bl

Proposition 3.4 The space W(r,d) is a fine moduli space for the moduli problem
of classifying maps P* — P of degree d up to uniqueness.
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3.1. Maps P! — P’

Proof We claim that the following family of degree d maps over W(r,d) is
universal:

W(r,d) x P! —2— P’

|

W(r,d)

where o sends a point (7, x) to y(x), where we consider v € W(r,d) as a
degree d map P! — P. This is clearly a well defined family. We denote this
family as U : W(r,d) x P! — W(r,d) x P". Let

X P

T

B

be an arbitrary family of maps of degree d. We denote this family as F :
X — B xIP". We claim that this arbitrary family is the pullback of the
family U along a unique morphism ¢ : B — W(r,d). We use the fact that
any map P! — IP” of degree d is of the form described by Definition 3.1 (in
fact this is the definition of a degree d map). Thus any map y; : C, — P”
factors through W(r,d) uniquely. More precisely, we have the following
commutative diagram:

B ,Xx P
H!fl UT (3.1)

W(r,d) —— W(r,d) x P!

where f sends each point in the smooth rational curve C, to its local expres-
sion ¢ under y,. We can thus define the unique morphism as b — C;, — £.
Pulling back the family U along this morphism:

B () (W(r,d) x P1) = B x PL 20 w(r,d) x PL — "

lPB JPW
B ? W(r,d)

we obtain the family:

B x P Wk pr

o|
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3.1. Maps P! — P’

we claim that this family is equivalent to the family F. Indeed, by the
universal property of the fiber product, the morphism pyp1 : B x P! —
W(r,d) x P! is the following mapping

(b, p) = (9(b),p)

Therefore for any point b of the base scheme B, we have

T 0 Py ypl \pgl(b) b x P! — P’ (3.2)
Pwx
(b, p) =2 (9(b), p) % @(b)(p) (3.3)

which coincides with the map pj, according to the diagram 3.1. This estab-
lishes the desired equivalence of families. O

Drawbacks of W(r,d) For classifying maps from a smooth rational curve
to IP”, the moduli space W(r,d) is inadequate for our purposes. For one
thing, it is not true that every family of rational curves admits a family of
parametrization from one and the same IP!. Another problem is redundancy:
reparametrizations of the same rational curve in IP” are considered distinct
objects.

3.1.2 The Fine Moduli Space Classifying Maps of Degree d up to
Isomorphism

The space W(r,d) introduced in the previous section is insufficient since it
admits different parametrizations for maps that are from a “different IP!”,
that is to say, the space W(r,d) is sensitive to isomoprhisms of P!. To be
more precise, we would like to classify our objects, which are degree d maps
P! — IP" up to an isomorphism that is given by an isomorphism on the do-
main IP!. This will give us a moduli problem of classifying maps C — P of
degree d, where C is a projective smooth rational curve, up to isomorphism
of maps.

Definition 3.5 Let 4 : C — P" and y/ : C" — PP" be morphisms, where C,C’
are projective smooth rational curves. An isomoprhism between the maps u
and p' is an isomorphism of projective smooth rational curves ¢ : C — C’
such that the following diagram commutes:

C ¢ c’
N o
II)I’

However, by Proposition 2.19, we know that all projective smooth rational
curves are isomorphic to P! Therefore this definition actually just imposes
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3.1. Maps P! — P’

that two maps are isomorphic if they are the same map up to an automor-
phism on the domain P'.

The notion of equivalence of families will be the following:

Definition 3.6 Given families (of maps of smooth rational curves) F : X M

BxP"and F': X’ M) B x IP" over a common base scheme B, we say they
are equivalent if for any b € B, the following maps are equivalent in the sense
of Definition 3.5:

port(b) ~p o'l (b)

In view of this notion of equivalence of families, we should expect that if
a moduli space (fine or coarse) exists for the moduli problem of classifying
maps C — P! of degree d, where C is a projective smooth rational curve up
to isomorphism of maps, the space shoould to be set theoretically bijective

with the quotient set
W(T, d) /Aut(lPl)

Plausibility of existence of a moduli space It is a general fact that when
classifying algebro-geometric objects up to a certain equivalence, if every
object is automorphism-free, then the existence of a fine moduli space can
be expected. If each object as a finite group of automorphisms, then the ex-
istence of a coarse moduli space can be expected. Lastly, in general, if some
object has an infinite automoprhism group, then the existence of either fine
or coarse moduli space cannot be expected. These should not be taken as di-
rect proofs of the existence of these spaces however, as there are exceptions
to this rule. They instead serve as indicators to motivate or discourage one
from movinf forward in the search for them.

The following proposition suggests at least the plausibility of the existence
of a course moduli space classifying maps of degree 4 up to isomorphism of
maps.

First, we recall a result that relates maps between function fields of two
varieties and rational maps between the varieties.

Lemma 3.7 (Hartshorne [7] Theorem 4.4) For any two quasi-projective varieties
X and Y over an algebraically closed field k, there is a bijection between

1. the set of dominant rational maps from X to'Y, and
2. the set of k-algebra homomorphisms from K(Y) to K(X).

Furthermore, this correspondence gives a arrow-reversing equivalence of categories
of the category of varieties and dominant rational maps with the category of finitely
generated field extensions of k.
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3.2. Pointed Maps

Proposition 3.8 Let u : P! — " be a nonconstant map. Then there is only
a finite number of automorphisms ¢ : P — Pl such that y = po¢. If pis
birational onto its image, then Aut(u) is trivial.

Proof Let C(u(P!)) be the function field of the image curve u(IP') C IP",
and let C(IP!) be the function field of IP'. Then C(IP!)/C(u(PP!)) is a finite
field extension. In general the function field of a quasi-affine variety Y over
an algebraically closed field k is a finitely generated field extension over k,
as K(Y) = K(U) for any U open affine subset, we may assume Y is affine,
so K(Y) is isomorphic to the quotient field of the coordinate ring, which is
finitely generated. On the other hand, the

Therefore the field extension C(u(IP')) < C(IP!) is a finite field extension.
Now by Lemma 3.7 there is a bijection between the automorphism group
of y with the group of automorphisms of C(IP!) that fixes the subfield
C(u(P')). Since the field extension is finite, this group is finite as well,
thus the desired result. The condition that p is birational onto its image
is equivalent to C(u(P!)) = C(IP!), which then implies the automorphism
group of y is trivial. O]

It is in fact true that there exists a coarse moduli space classifying maps up
to isomorphism. We will however not pursue this line of inquiry further.

3.2 Pointed Maps

As with the case of the fine moduli space M classifying curves The goal of
this section is to add the additional structure of marked points to the source
curve of a map classification of maps from n-pointed projective smooth ra-
tional curves to IP”, up to an equivalence that is given by an isomorphism of
curves which respects both the marked points, and the respective mappings.

The objects we will be classifying are maps C — P" of degree d up to iso-
morphism, where C is an n-pointed tree of projective lines. Isomorphism
here refers to an isomorphism of curves that respects the marked points.

Definition 3.9 An n-pointed map is a morphism y : C — P", where

(C/pll- . -/pn)

is a nodal curve with n distinct marked points that are smooth points of C.
We will often denote an n-pointed map as

(C/p1/~"/pn;;’l)

Note that at the moment we have not imposed any sort of stability condi-
tions, thus the marked points are free to be placed on any twig, and there

43



3.2. Pointed Maps

are no constraints on the number of marked points on a given twig (except
of course the total number of marked points must be 7). An isomorphism
of n-pointed maps is an isomoprhism of curves that respects all structures:

Definition 3.10 An isomoprhism of n-pointed maps y : C — P" and ' :
C' — IP" is an isomorphism of source curves ¢ : C — C’ making the follow-
ing diagrams commute:

C ¢ c’
N o
:[I)Y

and
c .,

; H . .p_;

where 0}, 0] single out the marked points in the source curve.

Families of objects will be the following:

Definition 3.11 A family of n-pointed maps of degree d (over a base scheme B
with structure map ) is a diagram:

X s pr

ngm

where 7 is a flat morphism such that each geometric fiber C, := 7~ 1(b) is
isomorphic to a tree of projective lines. Thus 7t can be thought of as a family
of trees of projective lines. The ¢; are n disjoint sections that do not meet the
singular points of the fibers of 7, i.e. over any point b € B, o(b) € = 1(b) is
non-singular.

Therefore the the map yu restricted to the fiber Cy:
plo, : X = P’

is a map from an n-pointed tree of projective lines C; to IP". We also impose
that this map must be of degree d. In fact, it can be shown that all y;, must
have the same degree.

To specify a family defined this way is equivalent to defining a morphism

E:X > BxP
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3.2. Pointed Maps

that respects the sections, i.e.
ppogoo; =moo; =idg
for every i. We shall use these two descriptions interchangeably.

The notion of equivalence of families will be similar to the case for non-
pointed maps, except the isomorphism will be given by isomorphism of
n-pointed curves.

Definition 3.12 Given families of maps of n-pointed curves of degree d F :

X M B x IP" with sections ¢; and F’ : X’ M B x IP" with sections o7

over a common base scheme B, we say they are equivalent if for any b € B,
the following maps are isomorphic in the sense of Definition 3.10:

/

M) = H L)

and unsurprisingly:

Definition 3.13 Suppose F : X M) B x IP" is a family of maps of n-pointed
curves of degree d, and ¢ : B — B a morphism. Then the pullback of F along
@ is the family

B x5 X XN pr
o[
B/

where the {;’s are the unique maps from B’ ro B’ x 3 X given by the universal
property of the fiber product.

Now for the main takeaway for this section, which is the existence of the
fine moduli space classifying pointed maps of degree d.

Theorem 3.14 For each n > 3 there is a fine moduli space My, (IP", d) classifying
n-pointed maps P* — P of degree d, namely

Mou(P",d) = Mo, x W(r,d)

Proof We claim that the following family has the universal property:

Moy, x W(r,d) x P! —7— P’

Pwal}Ti

MO,n X W(T’, d)

where the sections o; are the sections of the universal family of My,, in
particular the first three sections are the constant ones 0,1, 00, and the rest
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3.2. Pointed Maps

are projections, see Theorem 2.13 for details. The morphism ¢ is identical
to the one in the universal family over W(r,d) of Proposision 3.4, except the
source has an additional factor from My ,. To be precise, the map is

o: Mo, x W(r,d) x P! — P’
(0,7 p) = 7(p)

where we interpret the point y as a map P* — P".

Now let
x o pr

n£jm

be an arbitrary family of maps of n-pointed smooth rational curves. We
aim to show the existence of a unique morphism ® : B — M, x W(r,d)
such that the arbitrary family is isomorphic to the pullback of the claimed
universal family. Notice that
X
| Je
B

is a family of n-pointed projective smooth rational curves. In particular, by
Proposition 2.20, there is a unique isomorphism ¢ : X — B x P! making
this family of pointed curves isomorphic to the trivial family

B x IP!

PBg%

where the first three sections send a point to 0,1,00 in P! respectively. By
the universal property of the fine moduli space My, there exists a unique
morphism B — M)y, inducing this trivial family from the universal family
of n-pointed smooth rational curves, i.e.

MO,n X 1131

pu | Jo

MO,n
On the other hand, the universal property of W(r,d) ensures that our family

B x P! — P’ is induced by the universal family W(r,d) x P! — P’ via
a unique morphism B — W(r,d). Combining the two unique morphisms
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we obtain the morphism ® : B — Mg, x W(r,d). Pullingback the claimed
universal family along this morphism:

B X My, x W(r,d) Mo X W(r,d) x P! P! Moy x W(r,d) x PL —Z— "

i Moy x W(r,d)

reduces down to give us the family

Bx P! ZF pr

alE

B

where p = pywpt, and ; are the unique sections on the pullback family
given by the universal property of the fiber product. It remains to show that
this pullback family is equivalent to the arbitrary family.

By the commutativity of the above diagram, the morphism p must be

p(b,p) =®(b) xp

Since we know that the arbitrary family is equivalent to the trivial family

Bx P! s pr

PBlT%‘
B
it suffices to show that {; = <; for any i. 0

3.3 Compactifying My, (IP",d) via Stable Maps

In a similar fashion to the process of compactifying My, to obtain My ,, we
will compactify the space My, (IP",d) by enlarging the class of objects to the
collection of n-pointed stable maps, which allow the source curve to be a tree
of projective lines with n-marked points, subject to a stability condition on
the map.

Definition 3.15 An n-pointed map p: (C, p1,...,pn) — P" is called stable if
any twig which is mapped to a point is stable as a pointed rational curve;
i.e. there is at least three special points on it. See Definition 2.25 for details.

It is important to note that the source curve C of a stable n-pointed map
need not be stable. For example, consider a non-constant map P! — TP’.
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3.3. Compactifying My, (IP",d) via Stable Maps

There is only one twig on P!, which is P! itself; it cannot be mapped to a
point since the map is non-constant. Thus the condition to be an n-pointed
stable map for any n is vacuously satisfied. If we take n = 0 then P! with
no marked points is obviously not stable as a rational curve.

The equivalence relation on these objects is almost exactly the same for n-
pointed maps of smooth rational curves:

Definition 3.16 An isomoprhism of stable n-pointed maps y : (C, p1,...,pn) —
P" and 4" : (C',p1;,...,py) — [P’ is an isomorphism of source curves
¢ : C = C’ making the following diagrams commute:

C ¢ c’
N o
IPV

and
c Y,

Hgm v ja;

where 07, 0/ single out the marked points in the source curve.

Now we define a family of stable n-pointed maps, which is just a slight gener-
alization

The following lemma characterizes stable n-pointed maps, and also indicates
that a coarse moduli space should exist.

Lemma 3.17 An n-pointed map is stable if and only if it has a finite number of
automorphism.

Proof Let u : (C,p1,...,pn) — P’ be a stable map. If the source curve is
stable as an n-pointed rational curve, then there are no automorphisms by
Proposition 2.26. If the source curve is not stable, then there exists some
twig E of the source curve that is unstable as an n-pointed rational curve.
Thus by the stability of the map y, E is not mapped to a point, which means
#|g is a non-constant map P! — IP”. Now let ¢ be an automorphism of
the map , and let E’ := ¢(E), then | o ¢|p = pt|;. Now Proposition 3.8
implies that there are only finitely many automorphisms of y|,. Thus an
infinite number of automorphisms ¢ will lead to a contradiction.

Conversely, suppose u : (C, p1,...,pn) — P" is an unstable map. Then there
is an unstable twig E that is mapped to a point under p. By Proposition 2.26,
a curve being unstable is equivalent to it having infinite automorphisms.
Each one of these automorphism of E can be extended to the whole of C by
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3.4. Canonical Maps

imposing the identity on the other twigs. Since the image y(E) is a point,
these automorphisms commute with y, satisfying the condition for them to
be automorphisms of the map p. Therefore y has infinite automorphisms.[]

Remark 3.18 Recall from the previous section we constructed the fine moduli space
My (", d) classifying n-pointed maps P — P of degree d, for n > 3. Since we
know that for n > 3, there are no non-trivial automorphisms of P!, thus first and
foremost all maps in My, (IP", d) are stable.

Now we can state the following two existence theorems of the space, essen-
tially distilled from more general results found in [6]. We will not give the
proofs.

Theorem 3.19 (F-P [6]) There exists a coarse moduli space My ,(IP", d) classifying
stable n-pointed maps to IP" of degree d up to isomoprhism.

Theorem 3.20 (F-P [6]) The coarse moduli space My, (IP",d) is a projective irre-
ducible variety, and it is locally isomorphic to a quatient of a smooth variety by the
action of a finite group. It contains My, (IP",d) as a smooth open dense subvariety
which is a fine moduli space for maps without automorphisms.

3.4 Canonical Maps

There are two important canonical maps from M, (IP",d) that will be of use
to us. One of them is the forgetful map that mirrors that of My . But first,
we look at the so-called evaluation maps. Unfortunately, the proof of their
existence, that they are morphisms, and several properties which we will
need are beyond the scope of this paper, so we will omitt them. They can be
found in Knudsen’s paper [10]. We will only give set-theoretic descriptions
for them here.

3.4.1 Evaluation Maps
For each mark p; there is a natural map
ev;: Mg, (P",d) — P’
(S p1seees )] = (i)

called the evaluation map. It sends a map to its value on the mark p;. One
property of the evaluation maps we will need later is that they are flat:

Lemma 3.21 The evaluation maps are flat.
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3.5. The Boundary of Mg ,(IP",d)

3.4.2 Forgetful Maps

As with the case of stable curves, we can define a forgetful map:
€: Mouy1(IP",d) — Mo, (P, d)
Which enables us to define for each choice of sets of marks B C A a map
Mo,a(P",d) — Mo (P",d)

The description of how the forgetful map affects a map with reducible source
curve is similar to the case for My,. Twigs that become unstable by the
absence of the dropped mark must be contracted. We will omit the details
here.

Next is the existence of a morphism from the moduli space of maps to the
moduli space of stable curves:

Proposition 3.22 (Forgetting the map to IP") For n > 3, there is a forgetful
map o B
n: MO,n (ﬂjr,d) — MO,n

Roughly speaking, this map is constructed by forgetting the data of the map
to IP”, then stabilizing the source curve. This map is also (confusingly) called
the forgetful map as well. Although the context should make it clear which
map is being talked about.

This forgetful map # is in fact also a flat morphism:
Proposition 3.23 For n > 3, the forgetful map
[/ Mo,n (IPr, d) — Mo,n

is a flat morphism.

3.5 The Boundary of M, ,(IP",d)

In this section, we will show that there is a combinatorial description of the
boundary of MO,H(IP’,d). This will be central to our proof of Kontsevich’s
formula, where this combinatorial description will lead to the very one that
gives the recursive relation in the formula.

The boundary of M, (IP”,d) resembles that of M ,, it consists of maps that
have reducible curves as their domains.

Lemma 3.24 The boundary Moy, (IP",d) \ Mo, (IP",d) consists of all the maps
whose source curves, i.e. domains, are reducible curuves.
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3.5. The Boundary of Mg ,(IP",d)

Proof If (C;p1,..., pu; 1) is an n-pointed stable map y : C — P where C is
an irreducible tree of projective lines, thus is isomorphic to P!, then the only
automorphism of y is the identity. Therefore (C; p1,...,pns 1) € Mg,n(lP’, d).
Conversely, suppose (C; p1, ..., pn; 1) is an n-pointed stable map that is au-
tomorphism free. Then if C is reducible O]

Definition 3.25 Let d be a non-negative integer. A d-weighted partition of a
set S == {p1,...,pn} consists of a partition AUB = S of S and a partition
da +dp = d of d, where d 4 and dp are non-negative integers.

We can carry over the descriptions of the boundary on M, to the case of
maps, where boundary cycles are maps with reducible source. We must also
be mindful of the degree of the maps however. We will need the following
lemma:

Lemma 3.26 Let d > 2 be an integer. For each d-weighted partition
AUB=S, dsg+dp=d

there exists an irreducible divisor D(A, B;d 4, dp) called a boundary divisor, where
a general point on this divisor is a map p whose domain is a nodal curve C with
two twigs C4 and Cg, with points of A on C4 and those of B on Cp, such that the
restriction of y to C, is a map of degree d 4 and the restriction of y to Cp is a map
of degree dp.

We also have an analogue to Lemma 2.35:
Lemma 3.27 (F-P [6] Lemma 12) There is an isomorphism

Mo auxy (P, da) Xpr Mo pugxy(P",dp) = D(A,B;da,dp)

Here is the combinatorial description, we we call the fundamental relation.
Theorem 3.28 (fundamental relation) Let n > 4. Let
n: MO,?Z (]Pr, d) — Mo,n — MOA

be the composition of forgetful maps. Let D~1(ijlkl) = n~'(D(ij|kl)) where
D(ij, kl) is a divisor in Mg (so in particular S = {i, ], k,1} are the four marks).
Then

D~ '(ijlkl) = Y D(A,B;d4,dp) (3.4)
where the sum is taken over all d-weighted partitions of the markings S = {p1,..., pn}
such thati,j € A and k,1 € B. Furthermore, we have the fundamental relation:

Y. D(A,B;dadg)= Y, D(AB;dadg)= Y. D(AB;d,dp)

AUB=S AUB=S AUB=S
i,jEA ikeA ileA
kleB jl€B j.keB

da+dg=d dp+dg=d dp+dg=d

(3.5)
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3.6. The Dimension of M ,(IP",d)

Proof We will omit the proof that the coefficients of 3.4 are all 1. By Lemma
1.7.1 of [5], the pullback cycle is the cycle consisting of the inverse scheme
under a flat morphism, and by Proposition 3.23 we know this map 7 is
indeed flat. First, we pull back the divisor D(ij|kl) to My, to get n-pointed
stable curves on two twigs, i.e. the cycle

Y D(A[B) (3.6)
AUB=S

ijeA

kleB

Recall that any two points on Mo,{i,j,k,l} = My = P! are linearly equivalent,
thus their pullbacks to M, are linearly equivalent as well. In particular the
pullbacks of divisors D(ij|kl), D(ik|jl), and D(il|jk) are linearly equivalent:

Y. D(AB)= ) D(AB)= ) D(AIB) (3.7)

AUB=S AUB=S AUB=S
i,jeA ikcA ilcA
kleB jl€eB j.k€EB

Then pulling back (3.7) to My, (IP",d) gives us the desired fundamental rela-
tion of (3.5). O

3.6 The Dimension of M, (IP",d)

The following proposition gives the dimension of M ,(IP",d) for n > 3. The
proof however, will need the coarse moduli space

Moo (P",d) = W(r,d) [ su(p?)

Several comments are in order: This is a geometric quotient in the sense of
Mumford [13]. For our purposes however, it suffices to consider this as a
quotient of complex (smooth) manifolds, and that there exists the classifica-
tion morphism

W(T, d) — M0,0 (]Pr, d)

The fact that Moo(IP",d) is a coarse moduli space classifying (unpointed)
maps is not substantiated, and is a rather deep result.

Proposition 3.29 The dimension of M ,(IP",d) is
dim Mo, (P",d) =rd +r+d+n—3

Proof It suffices to show the result for the dense open subset My, (r,d), i.e.
that
dim My ,(r,d) =rd+r+d+n—-3
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3.6. The Dimension of M ,(IP",d)

First consider the dimension of the unpointed case. Under the classification
morphism above, the generic fiber is isomorphic to Aut(IP') = PGL(2,C)
(as a smooth complex manifold). Since the classification morphism is a

dominant morphism of varieties, by Corollary 13.5 of [4], the dimension of
MO,O(IPT, d) is

dim Moo (IP",d) = dim W(r,d) — dim Aut(lP*) = rd +r+d — 3

Now observe that for each additional marked point, the dimension incre-
ments by 1, thus the desired result. OJ
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Chapter 4

Kontsevich’s Formula

4.1 Transversality of Intersection

Consider the n evaluation maps {ev;}! ; on the moduli space of n-pointed
degree d stable maps My, (IP",d). They induce a map ev : My, (P",d) —
(P")" by simply taking taking the n-tuple of the evaluation maps. Let
7; ¢ (IP")" — IP" be the i-th projection map, then we have the commutative
diagram

ev

Mo, (P",d) — (P)"

ev; /

]I)T’

Given I'y,..., I’y C IP" irreducible subvarieties, denote their product:

n

Li=Tyx-xI,=)t (T CP)

We also denote k; the codimension of I'; in IP".

By the flatness of the evaluation maps (Lemma 3.21), the inverse images
ev; !(T;), consisting of all (equivalence classes of) maps y such that u(p;) €
[;, has codimension k; in My, (IP",d) as well.

We are interested in the case when the codimensions of the I';’s add up to the

dimension of My, (IP",d). In which case, we will show that the intersection

evi '(T1)N---Nev, ' (T,) =ev (T)

has dimension zero. In the proof of Kontsevich’s formula, each I'; will repre-
sent an incidence condition on the curves, and having dimension zero allows
us to conclude that there are finitely many curves satisfy these constraints.
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4.1. Transversality of Intersection

Let us recall the notion of a group variety, for details see Hartshorne [7]
Section III1.10. A group variety G over an algebraically closed field k is a
variety G, together with morphisms 1 : G X G — G and p : G — G, such
that the set G(k) of k-valued points, equivalently closed points of G becomes
a group under the operation induced by u with p giving the inverses.

We say that a group variety acts on a variety X if there is a morphism 6 :
G x X — X which induces a homomorphism of groups G(k) — X.

A homogeneous space is a variety X together with a group variety G acting
on it, such that the group G(k) acts transitively on the the set X(k) of closed
points of X.

In particular, the projective space IP{: (and more generally over any alge-
braically closed k) is a homogeneous space for the action G = PGL(n).

Now we present a theorem by Kleiman.

Theorem 4.1 (Kleiman [9] Theorem 2. or Hartshorne [7] Theorem 10.8) Let
X be a homogeneous space with group variety G over an algebraically closed field
k of characteristic 0. Let f : Y — X and g : Z — X be morphisms of irreducible
varieties Y and Z to X. For any o € G(k), let Y7 denote Y considered as a va-
riety over X via the composition, in other words Y7 is the morphism of varieties
cof :Y — X. Then there exists a non-empty dense open subset U C G such
that for every o € U(k), the fiber product Y’ x x Z is either empty or of dimension
exactly
dim(Y’ xx Z) =dimY +dimZ — dim X

Furthermore, if Y and Z are smooth, then U can be chosen such that for every

o € U, the fiber product Y x x Z is also smooth.

Lemma 4.2 ([6] Lemma 13.) Let M ,(IP",d) C Mo, (IP",d) be the locus of maps
with smooth source curve and without automorphisms. Then Mg, (P",d) is a dense
open set.

The proof of the following result will essentially be a repeated application
of this theorem for the case k = C, X = (P")", and G = PGL(n)".

Propgsition 4.3 For generic choices of T'y,...,T,, C P", with ¥} ; codimT; =
dim M, (P",d), the scheme theoretic intersection

consists of finite number of reduced points, supported in any preassigned non-empty
open set, and in particular, in the locus Mg, (IP",d) C Mo, (IP",d) of maps with
smooth source curve and without automorphism.
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Proof By abuse of notation, we denote M* be a chosen nonempty open set.
Let G denote the product of n copies of the group G = PGL(n), it acts
transitively on X" = (IP")" by translation. We have the morphisms

i:T— X"
which is inclusion, and the n-fold evaluation map
ev: (M) — X"

Let o € G, recall that I'” denotes the variety I' considered as a variety over
X via the composition ¢ o f; in other words, it is a translation of I by an ele-
ment o of G. The inverse image of I'” under the map v is identified with the
fiber product I'V xx» (M*)¢. Kleiman'’s theorem applied to the morphisms
i,v implies that there exists a dense open set V; C G such that the inverse
image of I'” in (M*)¢ for any o € Vi, is empty. Therefore generally, the
intersection is wholly supported in M*.

Now we prove the intersection consists of finite number of reduced points.

Let Y := SingT, the set of singular points, it is indeed a variety by Theorem
5.3 of Hartshorne [7]. Now we apply Kleiman’s theorem to the inclusion

Y — X"
and
ev: M" — X"
we obtain a dense open set V, C G such that either ]

Corollary 4.4 The intersection of ev—'(T) with any boundary divisor in My ,,(IP",d)
is transversal.

Proof Any such intersection should still be a finite number of reduced
points. O

4.2 Counting Maps

In the proof of Kontsevich’s formula, we will be counting the number of
maps (points) in Mg, (IP”,d) that meet prescribed conditions. We prove here
in this section the equivalence of counting these with counting the number
of rational curves of degree d passing through 34 — 1 points.

Lemma 4.5 Suppose n > 2, and 1 < i,j < n are distinct. Let

Qij = {pn € Mou(P",d) : u(pi) = u(pj)}

be the locus of maps whose two marked points p; # p; have common image in IP".
Then the codimension of Q;j in M == My, (IP",d) is equal to r.

56



4.2. Counting Maps

Note in particular that we are considering Mg ,(IP",d) and not M, (P",d).
As Proposition 4.3 suggests, our constraints will be supported wholly on the
locus with smooth source curve.

Proof We claim that it suffices to assume that n > 3. Indeed, consider the

commutative diagram

Mouir (P, d) —s P

| A

My, (P",d)

where ¢ is the forgetful map of the n + 1-th marked point, whereas 7; and v;
are the maps of evaluation at p; for the respective spaces. From commuta-
tivity we also get that 9; ' (Q;;) = e 'v; '(Q;;) Recall from Definition 3.1 that
the map y is defined by 7 4 1 degree d forms. Denote

d
_ N |
Ye = Z“k]xoxl
i=0

be the k-th form. Since we assume n > 3 we can assume the marked points
have homogeneous coordinates p; = [0 : 1} and p; = [1 : 0] (there is unige
automorphism of P! that sends the marked points to 1 and 0 respectively).
Now the condition y(p;) = u(p;) is equivalent to

(ac0, a10, - - -, arp) = AMaoa, a14, - - -, 4ra)
for some A € C*. This is r independent conditions in the ay;. O
p j

Lemma 4.6 Let r > 2. For generic choices of I'y, ..., I’y C IP", with codimensions
adding up to dim My , (P, d), we have

wtu(p) ={pi},i=1,...,n (with multiplicity 1)
for every map u in the intersection v—1(T).

For the proof of this lemma, we need to consider the dense open set Mj ,(IP",d) C
My,»(P",d) consisting of maps which have smooth source and are immer-
sions, i.e. that the tangent map is injecive when we consider the map as a
pointed map P! — P". To establish that this is indeed a dense open subset

of maps, we need the following lemma

Lemma 4.7 Let r > 2. The locus W°(r,d) C W(r,d) consisting of immersions is
open, thus is dense in the irreducible variety W(r,d).
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Proof Consider the closed subset in W(r,d) x P!
Y= {(n,x) € W(r,d) x P! | Du, =0}

Then W(r,d) \ W°(r,d) is the image of of the projection £ — W(r,d) which
is closed since the projection is a closed map. O

Now we claim that by this lemma that we have that Mg ,(IP",d) C Mo, (IP",d)
is an open dense subset, and thus also an open dense subset of the compacti-
fication. Indeed, by construction we know that My ,,(IP",d) = My, x W(r,d)
so in fact we have

Mg, (P",d) = Mo, x W°(r,d)

and the claim follows immediately from the lemma.

Proof (PROOF OF LEMMA 4.6) By Proposition 4.3, the intersection v ()
consists of a finite number of reduced points, supported on any chosen
dense subset of M(IP", d). We choose this dense open subset to be the dense
open subset M, (IP",d) C My, (IP",d). Now notice that a map P! — PP" hav-
ing injective tangent map is equivalent to the map having no ramifications,
this immediately implies that u~'u(p;) is reduced for each i = 1,...,n for
any y in the intersection v~ (I') which is supported in the locus Mj , (IP", d).
Now for each i, define J; C Mg, (IP",d) to be the locus of maps u for which
1 u(p;) contains at least one point distinct from p;. We aim to show that
this locus has positive codimension inside Mg/n(IPr, d), which means we can
perform another transversality argument. To that end, we consider the space
Mg,n +1 (IP", d) with one extra mark which we denote py, and consider the for-
getful map
1 Mg,y (P, d) — M, (P, d)

that forgets pp. We claim that the image of Q;¢ (as defined in Lemma 4.5)
under this forgetful map is exactly J; C Mg, (P",d). That ImQ;o C J; is
trivially a result by the definitions of these sets involved. We show the other
inclusion. For any y € J;, we know that there exists some point in the source
of u distinct from p; that has the image of p;. Putting the extra mark pp on
this point we get an (n + 1)-pointed map that is in Q; and whose image
under ¢ is u. This establishes that J; C Im Q; o.

Now by Lemma 4.5, Q;o has codimension » > 2, we can conclude that J;
must have codimension at least r — 1 > 1, as desired. ]

Now let us recall the object of interest in Kontsevich’s formula.

Definition 4.8 Let N; denote the number of rational curves of degree d pass-
ing through 3d — 1 general points in IP2.

Then the previous Lemma implies that counting maps is equivalent to count-
ing curves, more precisely:
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4.3. Bézout’s Theorem

Corollary 4.9 IfTy,..., T35 1 are general points in P2, then the number of stable
(3d — 1)-pointed maps y : C — P" (with marked points {p1,...,pss_1}) such
that p; — T'; is equal to the number Ny of rational curves through those points.

Proof By Lemma 4.6, each map passes only once through each point, so
there is precisely one possibility for the position of each marked point. Thus
the number of stable maps is also the number of rational curves passing
through the points. 0

4.3 Bézout’s Theorem

Here we restate the well known Bézout’s Theorem which we will use in the
proof of Kontsevich’s formula. The proof can be found in many elementary
textbooks on algebraic geometry, for example in Hartshorne [7].

Theorem 4.10 (Bézout’s Theorem) Let Y, Z be distinct curves in P2, having de-
grees d,e. Then Y N Z consists of d - e points, counting multiplicities.

Proof See Hartshorne [7] Corollary 1.7.8. ]

4.4 Kontsevich’s Formula for Rational Plane Curves

We seek to find a formula that gives the number Ny, for any 4.

Why 3d — 1 points? Consider the space P*#+3)/2 of homogeneous poly-
nomials of degree d. The space of all irreducible rational curves of degree
d constitutes a subvariety V§ C P#(*+3)/2 of dimension given by the genus-

degree formula:

g:(d—l)z(d—z)_(;

where g is the genus, and J is the number of nodes. We are only considering
genus 0 curves, thus we have the equation

(d—1)(d—-2)

2 =90

As such, to give a rational curve of degree d we must impose (d —1)(d —
2)/2 nodes. Further, imposing each node is a condition of codimension 1
(i.e. the condition corresponds to a hypersurface), we actually have that
d(d d—1)(d-2
dim V§ = @+3) @=D@=2) _5; ,
2 2

this means that to get a finite number of irreducible rational curves of degree
d we must impose 3d — 1 conditions, e.g. the condition of passing through
3d — 1 general points.
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4.4. Kontsevich’s Formula for Rational Plane Curves

Lemma 4.11 N; = 1.

Proof This is obvious, there is only one unique line that passes through any
given two distinct points. O

Theorem 4.12 (Kontsevich’s Formula) The following recursive relation holds:

3d — 4
Ni+ ) < )dﬁNdA - Ny, - dadp

da+dg=d 3ds—1
da>1,dp>1
3d -4
= 2 <3d Z)dANdA'dBNdB 'dAdB
dp+dp=d AT
da>1,dp>1

Proof Setn := 3d. We will work in the moduli space My ,(IP?,d), a variety of
dimension 64 — 1 (by Proposition 3.29). We use symbols my,mo, p1, ..., pn—2
to indicate the marks. Take two lines L1, L, in P? and n — 2 points Q1, ..., Qs,
all in general position.

Let Y C My, (IP?,d) be the subset consisting of maps

p(mi) €Ly
(C;my,my, p1,..., pu—o; i) such that ¢ u(my) € Ly

ulp)) =Q; i=1,...,n-2

In fact, Y is a subvariety since it is the intersection of the following inverse
images under the evaluation maps:

Y = ev;zll(Ll) N ev,‘nzl(Lz) N ev;ll(QQ N---N ev;ljfz(Qn,Z)

By flatness of the evaluation maps, the inverse image of a line is of codimen-
sion 1, and the inverse image of a point is of codimension 2, so the total codi-
mension of the intersection is 2 +2(n —2) = 6d — 2, i.e. Y is a curve. We will
now consider the intersection of Y with boundary divisors. Such an intersec-
tion will be a subvariety of codimension 2 +2(n —2) +1 = 64 — 1 equal to
the dimension of My, (IP?,2) because boundary divisors have codimension
1 and the intersection is a finite number of reduced points. Furthermore,
we know that the intersection takes place in any chosen open dense subset.
We will choose the smooth locus M, (IP?,2) C M, (IP?,2). The generality
of the points and lines imply (by Proposition 4.3 and Corollary 4.4) that Y
intersects each boundary divisor transversally in our chosen dense open set
Mg, (IP2,2).

Consider the forgetful map Mo,(P2,d) — Mo (g myprppy = Moa(P2,d)
which forgets the map p and the marks ps,...,p,—2 as discussed in The-
orem 3.5 to obtain the fundamental relation. From the fundamental relation
we obtain

Yn D‘l(ml,m2|p1,p2) =YnN D‘l(ml,pl\mz, p2) 4.1)
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First consider the left hand side. Recalling how we define the boundary
divisor
D! (my, ma|p1, p2) = Y_D(A, B;da,dp)

where the sum runs over all d-weighted partitions of the markings

{mll mZ/ pl/ M4 pnfz}

Each term in the sum is an irreducible component of the divisor correspond-
ing to a choice of distributing marks and degrees. We now investigate the
intersection of Y with each of the irreducible boundary divisors. We will
show that by by counting the maps in the intersections we will obtain the
claimed equality of Kontsevich’s formula. Throughout, we will use Corol-
lary 4.9 to to translate between counting maps and counting curves in IP2.

First consider the irreducible boundary divisors where the partial degrees
is distributed as d4 = 0, dp = d, i.e. all the degrees are on the B-twig.
This means that the A-twig C4 must be mapped to a point z € P? (under
), since the restriction of u to C4 must be of degree d4. Recall that the
marked point m; maps to L; and the marked point m, maps to L,, and since
the boundary divisor D! (my, ma|p1, p2) must have these two points on the
A-twig, we must have {z} = L1 N L,. Suppose there were more than these
two marked points on the A-twig, then these marked points would also be
mapped to z, but that would contradict the assumption that the lines and
points are in general position. Thus in this case Y has empty intersection
with all the cases where there are more than just m; and m; on the A-twig.
So when we only have m; and m; on the A-twig, we must map the B-twig
to a degree d curve in IP" (since dg = d). Once this conic is fixed there are no
more choices left for the marked points since the node C4 N Cp maps to z,
and the other marked points map to the Q;’s. Now notice that the number
of ways to draw a degree d curve that passes throughn —2+1 = 34 — 1
points (p1,..., pn—2 plus the node C4 N Cp) is exactly N;, by Corollary 4.9
this is also the number of maps that map to a curve that passes through
these points. This gives the first term on the left hand side of the desired
equality.

Similarly, let us consider the cases where dp = 0. This means that Cz maps
to a point. However, since there will always be more than two marked points
(excluding m; and m; since they have to be on the A-twig) mapped to the
same point, this contradicts the assumption of general position of the Q;’s.
Therefore there is no contribution from these cases.

Now we consider the cases where the partial degrees d4 and dp are positive.
We claim that the only distributions of the additional marks (i.e. marks other
than my, my, p1, p2) giving contribution is when 3d 4 — 1 additional marks fall
on the A-twig. This is because C4 must be mapped to a curve of degree d4,
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4.4. Kontsevich’s Formula for Rational Plane Curves

and if more than 3d4 — 1 additional points are placed on C4, that means
together with m; and my a total of 3d4 + 1 points are mapped to a degree
d 4 curve which contradicts the generacity assumption. The same argument
also implies there can be no more than 3dg — 3 additional points placed on
Cp. Therefore we have (3?;2141) ways to distribute the additional marks.
Now there are N;, possible curves for the image of C4 and N, possible
curves for the image of Cg. Once these are determined, the p;’s are deter-
mined.

Now it remains to consider how many ways to send the points m; and m;.
We know that m; has to be sent to a point of intersectoin between u(C,4) and
L1, by Bézout’s Theorem there are d4 such possibilities. The same is true for
my. This explains the factor of d2.

The intersection point x € C4 N Cp must be sent to a point of intersection
between y(C,4) and u(Cp). By Bézout’s Theorem again, there are d 4dp such
possibilities.

At this point we have completed the examination of the left-hand side of
(4.1) and showed that it coincides with the left-hand side of Kontsevich's
formula.

Now for the right-hand side. For the right-hand side of (4.1), we must
consider boundary divisors with mj, p; on the A-twig, and my, p» on the
B-twig,

If either d4 or dp is zero, then Q1 € Lj or Qy € Ly, respectively. This is a
contradiction to the generality of the Q;’s and L;’s.

For the other choices of d4 and dp, using the same genericity argument as
before, the only contribution comes from the cases when 3d 4 — 2 additional
points are placed on the A-twig, and there are (3?71‘17:12) such possibilities.
For each of these, the curves 1(C4) and y(Cp) can be chosen in Ny, and Ny,
ways, respectively. Now the marked point 77 must be mapped to (C4) N L.
By Bézout’s there are exactly d4 choices. Similarly we have dp choices to

map the marked point m;.

Finally we have to consider where to send the point x € C4 N Cg. We can
choose any one of the ddp points of intersection of (C,) and y(Cp).

This completes the analysis of the right-hand side of (4.1), which shows it
coincides with the right-hand side of Kontsevich’s formula.

Thus we have the desired result. O

62



Chapter 5

Gromov-Witten Invariants

As mentioned earlier, the proof of the main result we gave was not the origi-
nal proof of Kontsevich and Manin. This should not come as a surprise since
the line of argument we made begins with the formula as a given, and all we
did was verify the terms in the equation. It is therefore difficult to believe
that this is how it was originally conceived. Indeed, the technique used by
Kontsevich and Manin was a much greater machinery, that of Gromov-Witten
invariants, which roughly speaking, counts the number of maps in the mod-
uli space of stable maps meeting prescribed incidence conditions. Of course,
this already sounds exactly like what Kontsevich’s formula counts, some
number of maps of curves that meet conditions of meeting a number of
points.

Gromov-Witten invariants were originally inspired by ideas in theoretical
physics, and were defined in the context of symplectic geometry. It is a re-
markable fact that physics has led to great developments in pure mathemat-
ics; and has continued to do so in the past few decades. For more detailed
information on Gromov-Witten invariants related to theoretical physics, see

[2] and [8].

In this chapter, we will introduce Gromov-Witten invariants for the genus-0
case. That is, we (still) consider the moduli space of stable maps with source
as a genus-0 nodal curve; however, we allow ourselves to consider maps to
an arbitrary smooth homogeneous variety X. The existence of the moduli
spaces with such a target X (instead of IP" as we have been working with) is
in fact presented in F-P, so in fact when we presented these statements in the
previous chapters, their original statements in the source were of this level
of generality. As a result, we will not discuss the existence of any moduli
spaces that will appear in the following two chapters. In fact, F-P constructs
these moduli spaces of maps for arbitrary genus source curve, but we will
not need this.
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5.1. Definition

Note that Gromov-Witten invariants can be defined in much greater gener-
ality, what we present here is arguably the simplest flavor. Throughout, we
will work with cohomology with Q coefficients.

5.1 Definition

We fix a non-singular projective variety X that is a homogeneous space. Thus
it satisfies the conditions given by Example 19.1.11. of [5], that there is
an isomorphism between the Chow groups and singular homology groups,
with a doubling of degree:

Ay(X) = Hpu(X)

When X is of dimension 7, the intersection ring A*(X) is defined by setting
A4(X) = A,_4(X). Then by Poincaré duality isomorphism we can identify
A*X with A, X:

A*(X) = A(X)
v =N I[X]

so we also have equality of operational classes (classes in A*) and cohomol-
ogy classes:

AY(X) = H¥(X)
We will only be concerned with (co)homology classes of even degree, so
we will seldom distinguish between homology classes and algebraic cycle
classes, and between cohomology classes and operational classes.

We will however, work with cohomology with Q coefficients.

We will consider the more general moduli space Mo,n (X, B) which parametrizes
stable pointed maps (C, p1, ..., pn, #) where C is a genus-0 nodal curve and

X is a non-singular projective variety, p € A1(X) = Hz(X) and u.([C]) = B.
It is immediately clear that if B # 0 the moduli space is empty unless B

is the class of a curve. In particular, when X = IP’, then since 0 # B €
A;(X) is determined by the degree of a line, we write My, (IP",d) instead of
My, (IP", d[line]). Thus we recover the moduli space that is more familiar to
us.

Recall that our proof of Kontsevich’s formula involved counting the finite
number of points in the set ev~1(I'), where

£:r1><”-><rn

is the product of subvarieties in P” whose codimensions add up to the di-
mensions of My, (IP",d). This is equivalent to computing the degree of the
algebraic cycle class [ev—!(T)]:

deg([ev!(I)])

64



5.2. Properties

since by proposition 4.3, ev1(I) consists of a finite number of reduced
points, each point contributes one value to the sum.

Now let us reformulate this degree count in terms of homology and coho-
mology classes. Let v; € H*(IP") be the cohomology classes corresponding
to the algebraic cycle class [I';] € A.(IP") (via Poincaré duality). Then con-
sider the cohomology class

evi(y1) U---Uevy(vn) € H (Mo, (P",d))

Then using the correspondence between algebraic cycle classes and (co)homology
classes we can rewrite

degllev (D)) = [ evilm) U+ Uevim)

where on the right-hand side we are taking the value of the cohomology
class evi (1) U- - -Uevj(7,) on the fundamental homology class [Mo,, (IP", d)].

This will motivate the following definition:

Definition 5.1 (Gromov-Witten invariant) Let 1,...,7, € A*(X) be arbi-
trary classes. We define the Gromov-Witten invariant to be

o) = [ eviln) U Uevi()
0,n ’

It follows directly from the definition that Ig(y1---7,) is invariant under
permutation of the 7;’s, which is reflected by the notation y;---7, as a
product.

5.2 Properties

In Chapter 3, we cited important results from [6] on the existence of My , (P, d).
In fact, [6] presents results that are more general and concern the existence
of Mg, (X, B) as a coarse moduli space, and that further M, (X, B) is a pro-
jective variety. In particular, the dimension of this variety is given:

Theorem 5.2 (F-P [6] Theorem 2) Let X be a projective, non-singular, convex
variety. Then My, (X, B) is a normal projective variety of pure dimension

dlm(X) + /ﬁ Cl(Tx) +n-—3

where c1(Tx) is the first Chern class of the tangent bundle Tx of X.

65



5.2. Properties

This is relevant to us since in the definition of the Gromov-Witten invariant,
unless the cohomology class

evi(11) U- - - Uevy(7n)

has component of top degree in H*(My, (X, B)), the value is zero. Equiv-
alently, using Poincaré duality to relate the dimension and codimension of
(co)homology classes, the Gromov-Witten invariant vanishes unless

Y codim(y;) = dim(My, (X, B)) = dim X + /l3 e (Tx) +1—3

The following proposition illustrates that this definition is natural in the
context of our earlier work, that is, to find a formula for N;. In fact, it is more
natural than what we have done in the proof of Kontsevich’s formula in the
following sense. If we are imposing 3d — 1 incidence conditions, then we
should have 3d — 1 subvarieties I'; of dimension 0 (i.e. points) representing
those conditions in IP%; while having the same number of marked points
on the source curve, each corresponding to an incidence condition. Thus
one naturally considers the moduli space My3;_1(IP?,d), and look at the
pullbacks of the evaluation maps from the subvarieties to see how many
maps meet all those conditions. Of course, genericity in the position of the
subvarieties must be accounted for so we should phrase them in terms of
algebraic cycle classes or (co)homology classes.

Proposition 5.3 Let y1,- -+, vy € A*(IP") be classes of codimension at least 2,
with Y codim y; = dim My ,(P",d) = rd +r + d + n — 3. Then for subvarieties
I'1,..., Ty CIP"in general position with

[Ti] = i N [IP"]

the Gromov-Witten invariant 1;(7y1 - - - 7vn) is the number of rational curves of de-
gree d that are incident to all the subvarieties 'y, - - - ,T',.

However, recall from the proof of Kontsevich’s formula, that to obtain a for-
mula for N, we considered instead the moduli space M34, and considered
a mixture of subvarieties of dimension 1 and 0. Subsequently we performed
a series of combinatorial analysis on the boundary to obtain the desired re-
cursive relation. The appearance of N; is somewhat unexpected and seem
to have obscure origins and not at all clear until its appearance that the ap-
proach is the correct one. It is in this sense that we mean that the above
formulation of Ny in terms of Gromov-Witten invariants is more natural.

We end with some properties of the Gromov-Witten invariant which we will
need later for studying quantum cohomology.

Suppose B = 0. That is, Mo.(X,p) is the moduli space of constant maps
(C,p1,...,pn) = X. In which case My, (X, B) = Mo, x X where the second
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5.2. Properties

factor is the value of the map. Then in particular the evaluation maps ev;
are all identical to the projection onto the second factor

p:MQIHXX—)X

Lemma 5.4 Suppose p = 0. Then

Proof We use the identity

evy (1) U---Uevy(yn) =p (711U Uyn)

to obtain
Bnm) = [ evily)u-e Uevi(n)
. MO,n(Xr,B)

=/ pmU-Um)
MO,nXX

— YU Uy O

P [M(],n X X]

One particular consequence of this lemma is the following:
Corollary 5.5 If B = 0, then Ig(7y1 - - - vn) is non-zero if and only if n = 3.

Proof We use the equality of Lemma 5.4 throughout.

In the case that 0 < n < 2, the space Mo,n is empty, so the Gormov-Witten
invariant is trivially zero. Assume that n > 3. For p.[My, x X] to be non-
zero, it is equivalent to having

dim(p(My, x X)) = dim(X) = dim(Mo, x X)

(see [5]) §1.4 for the definition of push-forward of cycles). Now for n > 3,
the space My, has positive dimension, therefore the above equality cannot
hold. It is only when n = 3, i.e. My is a point, that the equality can hold.
This implies the assertion. O
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Chapter 6

Quantum Cohomology

We will now introduce a new binary operation on the cohomology classes
of X, called the quantum cup product, which is defined using generating func-
tions for Gromov-Witten invariants, which are called Gromov-Witten poten-
tials. We will show that this binary operation is commutative and associa-
tive. In particular, the associative property will be equivalent to the recursive
formula for Nj.

In preparation for the definition of the Gromov-Witten potential, we quickly
recall the notion of generating functions.

6.1 Generating Functions

A generating function is a series which one uses to package a sequence of
numbers. More precisely, suppose {Ni}2, is a sequence of numbers, then
we can form the following power series called the generating function (of the
sequence):

e Xk
F(x) := 2 ﬁNk
k=0 "

Obviously, there are many other ways one can define a series taking the en-
tries of the sequence as coefficients, and the above example is more precisely
the so-called exponential generating function. But since we will not have the
need for other types, we will just call it the generating function associated
to the sequence.

There are many reasons for defining generating functions, and they more
or less come down to manipulations of the series to obtain some relation or
property of the sequence itself. In particular for our purposes, we will often
consider the formal derivative:

d

EF,.=—F
x dx
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6.2. Gromov-Witten Potential and the Quantum Cup Product

which is the generating function for the sequence {Nj1}p,.

We can also multiply generating functions to get another generating func-
tion:

Lemma 6.1 (Product rule for generating functions) Suppose we have two gen-
erating functions

00 xk xk
F(x) =) ka and  G(x) = 718k

then their product is the generating function for the numbers

hy = Xk; (f) figk—1

i=0

o (£80) (£
Z

k']' fkg]

Proof

> fr8j
L (2 4)

m+j=k

- £ (£ (1)) .

6.2 Gromov-Witten Potential and the Quantum Cup
Product

We fix a basis
{TOI Tlr ey Tm}

for the cohomology groups of X. In particular we let Ty = 1 € A%(X), and
Ti,..., T, a basis for Al(X), and Ty+41,---, Tn a basis for the other cohomol-

ogy groups.

So the possible input classes
T(’)’lO .. T;;im

for the Gromov-Witten invariant are parametrized by the index variables
TZO, ceey nm.
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6.2. Gromov-Witten Potential and the Quantum Cup Product

In addition, for 0 < i,j < m, define

We also define the numbers g/ to be the entries of the matrix (g7) := (gij) "

For notational simplicity, let us collect the Gromov-Witten invariants with
input class 1, ...,y into the collected Gromov-Witten invariants, which is a
formal sum over all possible choices of B:

(v, n) = Zlﬁ(’yl,...,’yn)
B

The Gromov-Witten potential will be the generating function for the col-
lected Gromov-Witten invariants. We introduce formal variables

y= o, Ym)
for the generating function. Then,

Definition 6.2 (Gromov-Witten potential)

1o
O(yo,...,ym) = Y, L. m

v |
fo+- oty >3 100 Mm:

or, using multi index notation, where
v=(ng,...,Nn)

and understanding that we only consider n;’s such that ng + - - - +n,, > 3.
And put

y' =y"--ypr and vl=mng!---n,! and B =TT,

Then we can write the Gromov-Witten potential as
y‘l/
— v
P(y) = ; L")

Note that the Gromov-Witten potential is a formal power series with Q coef-
ficients, since we consider cohomology with Q coefficients.

Now define ®;j to be the partial derivative:
PP

= 3 . A a7 0 S i/ '/k S m
3yidy;dyx J

Djji

The following formula will be useful. But first, let us introduce yet another
formal variable to make things look nicer. Let v =} y;T;.
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6.2. Gromov-Witten Potential and the Quantum Cup Product

Lemma 6.3
yV
D = ZFI(W T T Ti) = Z:,)
v ° n—=

Proof Let us consider first the partial derivative with respect to one variable.

OD(yo, - Ym) _ - Og Ve Y
— T T = I(Tr ... T"m
y; ; agp! - - - ay! (To ')
no a;i—1 ar
yo...yi y}, o "
= I(T,°---T,m
Zao"“(ai_l)!"'ar!(o ")

Nm

v Y
_ 0 .. . Ym no . Thm T
_ZT’IO! nm!I(TOO Tm Tl)

vy
= ;ﬁl(h 'Tz‘)

Repeating the same procedure twice, we obtain the desired result. 0

Notice that this identity says that ®;; is the generating function for the
sequence of collected Gromov-Witten numbers I(h* - T; - T; - Ty). That is,
considered as a sequence indexed by all possible v. This will be important
later.

Now we finally arrive at a definition of the quantum cup product on the T;’s:

Definition 6.4 (Quantum cup product)

T, = DT,
e.f

it is evident from this definition that the quantum cup product is commuta-
tive, since the partial derivatives are symmetric in the subscripts.

Lemma 6.5 The quantum cup product is commutative.
Proposition 6.6 A unit for the quantum cup product is Ty = 1.

Proof First we write out the value of @y using Lemma 6.3 and Lemma 5.4:

v
@W:EZ%Jmﬁﬂyn-n)
iyl

v
CEL T
v . ‘B

=Io(To-T;- Ty)

=/DUH
X
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6.2. Gromov-Witten Potential and the Quantum Cup Product

Crucial to the above derivation is the fact that when the fundamental class
Tp is present, the only non-zero Gromov-Witten invariants are degree zero
and with three marks.

Then

CI)O * T] = Z(I)Ojegefo
e.f

=Y 4G/ Ty
of

We can extend the definition of the quantum cup product Q[[y]]-linearly to
the Q[[y]]-module

A*(X) ©z Q|ly]]

making it a Q[[y]]-algebra. The most important property however is associa-
tivity, which we now prove.

6.2.1 Associativity of the Quantum Product
First, we need a lemma called the splitting lemma.

Recall from Lemma 3.27 we have the isomorphism
MO,AU{x} (]Pr, dA) Xpr MO,BU{x} (IPr, dB) :> D(A, B; dA, dB)

In fact this result as presented in [6] is is more generally true on Mo, (X, B),
where the assumptions on X and p are as we declared in the previous chap-
ter. More precisely, this result is the following: Suppose AU B = [n] is
a partition, then there is an associated boundary divisor D(A, B; 1, 82) in
Mo, (X, B), where B1 + B2 = B and B; and B, are effective. Then we have an
isomorphism

Mo auger (X, B1) Xx Mo puger (X, B2) = D((A, B; B1, B2))

We will not substantiate the details of these claims. They can be found in

[6].

Lemma 6.7 (Splitting lemma) Let ¢ denote the natural inclusion of D(A, B; B1, B2)
in the cartesian product My auge} (X, B1) X Mo puger (X, Ba), and let a be the em-
bedding of D(A, B; B1, B2) as a divisor in Mg ,(X, B), with B = B1 + Ba. Then for
any classes y1,...,vn € A*(X), we have

o™ (evi(m)U---Uevy(ma)) =

) ed <H evy (72) -eVﬁ(Te)> x (HGVZ‘(%) ~eVﬁ(Tf)>

ef acA beB
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6.2. Gromov-Witten Potential and the Quantum Cup Product

Proof For notational simplicity, let
M = MO,n (X, .B)/ My = Mo,Au{o} (X,,Bl), My = MO,BU{.} (X, ,32)

and
D = D(A, B; B1,B2)

Thus we have an isomorphism D = M; xx My. We have a commutative
diagram

Mé+——D —— My x M,

[ Jo
X" XnJrl J Xn+2
p

where ev is the product of evaluation maps as before, 6 is the product of
the evaluation maps together with evaluation on the intersection point, ev’
is the product of ev and evaluation on the intersection point, separately on
the A-twig and B-twig, ¢ is the diagonal embedding that repeats the last
factor, and p is the projection that forgets the last factor. Then, utilizing the
commutativity of the diagram, and pushing forward and pulling pack of
cycle classes, we have

eoa®(evi(y1) U evy(yn)) = ta® oev® (71 X -+ X 1)
= 10" 0 p" (71 X -+ X 1)

o8 x X % [X])

=ev*ob (71 X - X 7, x [X])

=ev" (11 X 7 x [A])

=Y g7 ev* (71 x - X yu x To x T§)
e.f

_ZgEf (Hev Ya) - eve(Te) > X (HGV;(’Yb)'er(Tf)>

acA beB

Where A is the diagonal in X x X, and using the definition of (¢"/), the class
of the diagonal in A*(X x X) = A*(X) ® A*(X) is

A=) 87T, ® Ty
7

Corollary 6.8 Fix distinct integers q,t,s,t € [n], then

G(q,1,|s,t) 2/ ev] (y —-Uevy(n)
=281, (H Ya- Te) Ip, <H7b ' Tf)

acA beB
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6.2. Gromov-Witten Potential and the Quantum Cup Product

where the sum is over all partitions AU B = [n] such that q,vr € A and s,t € B,
Pr+B2=pB and0<e f<m

Theorem 6.9 (Associativity) The quantum product makes A*(X) ®z Q[[y]] into
a commutative, associative Q|[[y|]-algebra with unit Tp.

Proof We first write down what associativity means:

(T T) * T = (Y @ijeg Ty) « Te = Y Y @yieg @picg°dT;  (6.2)

e,f ef cd
Tix (Tj Th) = (L Ppreg” T) # Tr = Y ) Oipeg/ Pieg’d Ty (63)
ef ef cd

Equating the two equation, and using that the matrix (¢°), transitivity is
equivalent to
Y ®ijeg Ppy =Y Peg D (6.4)
ef ef
for all I. These differential equations are called the Witten-Dijkgraaf-Verlinde-
Verlinde (WDV'V) equations.

Now by Lemma 6.3, ®;, is the generating function for the invariants I(h" -
T; - Tj - T;). Therefore by 6.1, we can re-write the left hand side, a product of
two generating functions, as

14,1
E 2 n-y gefI(hFlA . ’Tl . T] . TE)I(hnB : Ti : T] ’ Te)
e,f na-trig=n TlA!TZB!

thus the WDVV equations become

VY Y i T T T I T T T)
ef natnp= —n NANB:

[41
:Z Z nigefl(hm; 'T]"Tk'Tg)I(h"B 'Tf'Ti'Tl) (6.5)
ef natng=n nA!nB!

We claim that this equality is the direct result of the fundamental relation
3.5. By the fundamental relation, we have the equality

D(ij|kl):= Y. D(ABidadg)= Y. D(AB;dadg) = D(jk|il)

AUB=S AUB=S
ijeEA ikeA
kleB jl€B

dp+dg=d dp+dpg=d

Consider the classes T;, Tj, Ty, Tj. We will take their pullbacks along the eval-
uations maps ev;, evj,evi,evy. In addition, we will take the (n — 4)-fold
pullback

ev x(n—4) (1>
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6.3. Proof of Kontsevich’s Formula via Quantum Cohomology

which is the (n — 4)-fold cup product of ev*(7y), where
v =T

We will integrate these classes over the equivalent boundary divisors to get
the equality

/ iy &Y () Vevi (T U] (T) Uevi (T) Uevi (T)
D(ijlk -

= oy &) Vv (T Uevi (T) Uevi (Ti) Uevi (T)
D(jklil -

Let us expand the left-hand side.

Using Corollary 6.8, using the case 7; = v for 0 < i < n—4, y,3 =
Tiovn—o2=T,vm1=Tx,vn=T,andq=n-3,r=n—-2,s=n—-1t=mn,
the left-hand side becomes

—4
2 Z <TlnA —2>yng6flﬁl (l—.[ To- Ty Ti- T6> I, (H Ty - Ty - Ty - Tf)

e,f nat+ng=n acA beB

[ [
e,f natng=n np:np: acA beB

!n
-y Y nly gef1ﬁ1<HTa.T1.Tk.Te>.Iﬁ2(HTb.Tk.Tl.Tf>

where the sum is over all B; + B2 = B, and ny +ny = n. O

6.3 Proof of Kontsevich’s Formula via Quantum Coho-
mology

For this section we fix X = [P for simplicity, although much of the content

can be done with general homogeneous X, with slight modifications. We

also fix the basis Ty as the fundamental class, T; as the point class, T, the
class of a line, etc. This means in particular that the numbers g;; is such that

1 e+f=m
gfff:{ /

0 otherwise

therefore the quantum cup product is simpler to describe:

Ti * T] = ; q)ijeTf
e+f=m

We will now break the Gromov-Witten potential into the sum of two gener-
ating functions:

D(y) = OWU(y) +T(y)
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6.3. Proof of Kontsevich’s Formula via Quantum Cohomology

where the classical part are the terms for g = 0:

lassical Z ygo y%n n
classica _ 0 n
g+, >3 no: My *

no Nim
Yo Yy o
= Z F...nm'/(Tgou...UT”;)
Mo+ -+, >3 10 m: JX

iJjYk
= ¥ (- Ty Ty
ik,j :

Then clearly
D = [o(T; - T; - T)

Decomposing the quantum cup product Now we can decompose the quan-
tum cup product into the classical part and the quantum part:

TeT= ¥ @)

e+f=m

= Y, (Io(Ti- Tj T.) 4 Lije) Ty
et+f=m

=(T,UT)) + )_TiTy

et+f

Now we will fix our attention to the case of the complex projective plane.
So fix m = 2. Then the basis elements for A*(IP?) are Ty = 1 (i.e. the funda-
mental class), T; is the class of a line, and T is the class of a point. Using
the decomposition above, we can write down explicitly the multiplication
for the quantum cup product as

Tix Tj = @jjoT2 + Pij T + PijpTo
By the associative property the following two equations must be equal:
(T1xT1) x Ty = (Tan Tr + T222To) + T111(T121Th + T122To) + T2 T

Ti % (T1 * T2) =T121(To + T111Th + T112To) + T2 T

In particular the equality of the coefficients of Tj gives

To2 = Tip — Ml (6.6)
Now we consider the partial derivatives of I™:

Tin(y) = Z%!h(hv “T; - T; - Tg)
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6.3. Proof of Kontsevich’s Formula via Quantum Cohomology

We consider in particular the case yo = y; = 0. Then

Ti(y) = D 2L((B)" T T+ T)

which is generating function for the numbers I, ((T2)" - T; - T; - T¢). Thus
using the product rule 6.1, we can rewrite 6.6 as

n!
L(T)" T T Tr) = ), L ()" T T To) [ ((T2)" - Ta - Ta - To)
Nna+na=n np:ng:

n!

11A|n3'1+((7§)”A Ty Ty - T (T)" - Ty - To - To)
nao+nap=n : :

Now let us examine the (positive )collected Gromov-Witten invariants I ((T2)" -
T; - Tj - Ty). Recall the definition

LT T Ty T) = Yo L((Ta)" T T; - Ty)
d=1

However, only compatible d and n give contribution. Notice these Gromov-
Witten invariants all have n + 3 marks, so we are working in Mg 43 (P?,d).
Recall from Proposition 3.29, the dimension of this space is 3d 4+ 2 + n. We
also need to check the sum of the codimensions of the classes, which is
2n +i+j+k, since T, is the point class. Now only an # such that these two
numbers are equal can there be a non-zero contribution:

n=3d+2—i—j—k

Before be go any further, a quick lemma on the Gromov-Witten invariant on
P

Lemma 6.10 In M(IP",d), suppose d > 0 and that one of the input classes h in
the Gromov-Witten invariant

Id(r)/l...r)/n h)

is the hyperplane class, then

Li(yi--ym-h) =d-Ia(y1- - vn)

Proof We denote o
ev;: MO,n+1 (]Pr, d) — P’

the evaluation map. The hat is placed here to differentiate it from the evalu-
ation map o
ev;: Mo, (IP",d) — P’
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6.3. Proof of Kontsevich’s Formula via Quantum Cohomology

and to we have the commutative diagram

Moyt (P, d) —s 7

Mo, (P, d)

where ¢ is the forgetful map.

Consider the class &V} ; in Mo,1(IP",d). It is the class of ei/;il(H) for
some hyperplane in IP". By definition of the inverse, it is also the locus of
maps whose n + 1-th marked point p,,11 is mapped to H. Now the forgetful

map ¢ restricted to eAV;}rl(H ):

€

o1 ()¢ Vot (H) = Mou(P',d)

is generically of degree d.

Now we have

Li(yi--yn-h) = /f e (Y1) U - - Ued,* (7n) Uevinyi*(h)
MO,VI+1 (]Pyrd)
= S (yYuev:, ,(h
s Pr) & (7) a1 ()
= &' (7)

(V5111 (H)]

= v (y
/e* e, 1, (H)] @

n+1

= v’
/d[Mo,n (Pr,d)] (z)
=d-Li(y- ) ]

Now back to where we were before. We re-write the relation

n!
L))" T T T)= ) ——L(T)" Ti-TiT2)L(T)" Ti-Ti-Tp)
Hatiia=n nap:ng.

n!
- )Y, L))" T Ty T)L((T2)" - Ty - T - Ta) (6.7)
natnap=n na-np.

with only the contributing 7, i.e. ones that satisfy
n=3d+2—-i—j—k

We will also use Lemma 6.10 to take out the T; factors in the Gromov-Witten
invariants to become d’s. Then recall from Proposition 5.3 that

Ny = I ((T2)¥ )
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6.3. Proof of Kontsevich’s Formula via Quantum Cohomology

Then we have the following five substitutions for each Gromov-Witten in-
variant:

For the first term [, ((T2)" - T - T, - T»), we have n = 3d +2—-2—-2—-2 =
3d —4,s0

L((T)" Ty Ty Th) = L((T)** - Ty T - T»)

For the term I ((T2)"2- Ty - Ty - To) ,we have ng = 3dy +2—-1-1-2 =
3ds — 2, so
L((T)" Ty Ty To) = I, ((T2)*472. Ty - Ty - Ta)
= di 14, ((T)*71)
= d4 Ny,

For the term I, ((T2)"8 - Ty - Ty - Tp), we have ng = 3dg+2—-1—-1-2 =
3dg — 2, s0
L((T)™ Ty -Th- To) = Ly (T2)** - Ty - Th - To)
= 1, (T2)™)
= d3Ny,

For the term [ ((Tp)"A - Ty - Ty - T1) , we have ng = 3da+2—-1—-1-1 =
3ds —1, so

L((T)™ Ty -Ty-Ty) = Iy, ((T)* 71Ty - Ty - Ty)
= dj 1y, ((T2)*7)
= d% Ny,

For the term I, ((T2)"8 - Ty - T, - Tp), we have ngp = 3dp+2—-1—-2—-2 =
3dp — 3, s0

L ((T)"™ Ty Ta- Tp) = Iy, ((T2)>* % - Ty - T - To)

= dply, ((T2)% 1)
= dpNy,
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And therefore, we can finally re-write 6.7 as

(3d —4)! ) ) (3d —4)! 3
N; = dsNy, dgNy, — d4 Ny, dgNy
dA;d;B:d (3da —2)!(3dp —2)!1 A 4TP e dﬁ%:d (3da —1)!(3dp — 3)! AT 4B s
3d—4> s <3d—4> 5
- 2Ny, d3N,, — &Ny, dsN;
3d —4 3d —4
- Nd Nd did}g <d3< )—dA< >>
dA-|§B_d A 3da—1 3d4—1

which is Kontsevich’s formula.
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Appendix A

Intersection Theory

A.1 Rational Equivalence

Definition A.1 (Hartshorne pg.16) Let Y be a variety. We denote by O(Y)
the ring of all regular functions on Y. If P is a point of Y, we define the
local ring of P on Y, Opy (or simply Op) to be the ring of germs of regular
functions on Y, near P. In other words, an element of Op is a pair < U, f >
where U is an open subset of Y containing P, and f is a regular function
on U, and where we identify two such pairs (U, f) and (V, f) if f = g on
unv.

It is important to know indeed Op is a local ring, i.e. that it has a unique
maximal ideal. Its maximal ideal m is the set of germs/equivalence classes
[(U, g)] such that g vanishes at P. Indeed the complement of m is the set of
all units: if f(P) # 0, then 1/ f is a regular function in some neighborhood
of P.

Another fact about the maximal ideal is that the residue field Op/k is iso-
morphic to the ground field k. This can be seen from the following short
exact sequence:

0—->m<—= Op M k—0
Definition A.2 (Hartshorne pg.15) If Y is a variety, we define the function
field R(Y) of Y as follows: an element of R(Y) is an equivalence class of of
pairs (U, f) where U is a nonempty open subset of Y, f is a regular function
on U, and where we identify two pairs (U, f) and (V,g) if f=gonUNV.
The elements of R(Y) are called rational functions on Y.

Note that R(Y) is indeed a field.

Proposition A.3 (The Local Ring of a Subvariety. Hartshorne Excercise 3.13)
Let Y C X be a subvariety. Let Oy x be the set of equivalence classes [(U, f)] where
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A.1. Rational Equivalence

UC Xisopen, UNY # @, and f is a regular function on U. The equivalence
relation is the following: (U, f) ~ (V,g) is f = gon UNV. Then Oy x is a local
ring, with residue field R(Y') and dimension = dim X — dimY. It is called the
local ring of Y on X.

Proof

Note that this is just a generalization of the local ring at a point P: If Y = P
is a point we just get Op. Also, if Y = X we get R(X). Note also that if Y
is not a point, then R(Y) is not algebraically closed, thus in this way we get
residue fields which are not algebraically closed.

Consider a variety X, and a subvariety V of codimension 1. Then the local
ring A = Oy x is a one-dimensional local domain. Let 7 € R(X)* (i.e. R(X) \
0, the multiplicative group), we will define the order of vanishing of r along V

as the following:
ordy (r) :=1I4 (A /(r))

where [4 denotes the length of the A-module in parentheses.

Recall what the length of a module is:

Definition A.4 (Length of a module) Let M be a module over a ring R. Given
a chain of submodules of the following form

NOgnggNn

we say that the chain has length n. The length of the module M is defined to
be the supremum of the length of all of its chains.

A.1.1 Cycles and Rational Equivalence

Let X be an algebraic scheme. A k-cycle on X is a finite formal sum

Y nilVi]
where the V; are k-dimensional subvarieties of X, and the n; are integers.

We can put a group structure on the set of all k-cycles on X, this group
is denoted Z;X. The group operation is simply addition of finite linear
combinations to get another finite linear combination. The additive identity
is just 0 (times any subvariety?), and the inverses are the obvious ones. This
group can also be described as the free abelian group on the k-dimensional
subvarieties of X. To each subvariety V we can consider itself as an element
of the group (just trivially with 1 as the coefficient), we will denote [V] when
considered as an element of the group.
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A.2. Pushforward of Cycles

For any (k + 1)-dimensional subvariety W of X, and any r € R(W)*, define
a k-cycle [div(r)] on X by

[div(r)] == Zordv(r) V]
the sum is taken over all codimension one subvarieties V of W.

A k-cycle & € Z; X is rationally equivalent to zero, written a ~ 0, if there are a
finite number of (k + 1)-dimensional subvarieties W; of X, and r; € R(W;)*,

such that
a =Y [div(r;)]

The set of cycles rationally equivalent to zero form a subgroup Raty X of
ZiX. This can be readily observed from the fact that

[div(r~")] = —[div(r)]

thus the inversion is closed in the subgroup.

The group of k-cycles modulo rational equivalence, or the Chow group of k-
dimensional cycles is the quotient

ApX = ZxX /Ratk X

A.2 Pushforward of Cycles

First, we define the notion of a proper morphism of schemes.

Definition A.5 Let f : X — Y be a morphism of schemes. Write
A: X = XxyX

for the diagonal morphism, i.e. the natural morphism in the category of

schemes
Asx U0 x o x

We say that the morphism f is separated if A(X) is a closed subscheme of
X xy X, i.e. the diagonal map is a closed immersion.

We say that a scheme X is separated if the unique morphism
X — Spec(Z)
is separated.

This is an analogue of Hausdorffness. There is an equivalent definition of a
topological space being Hausdorff if the diagonal A = {(x,x) : x € X} is a
closed subset of the product topological space X x X.
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A.2. Pushforward of Cycles

Definition A.6 Let f : X — Y be a morphism of schemes. We say that f is a
finite morphism if Y has an open cover by affine shcemes V; = Spec B; such
that for each i,

V) =i
is an open affine subscheme Spec A; (viewed as an open embedding), and
the restriction of f to U;, which induces a ring homomorphism

B — A;
makes A; a finitely generated module over B;
We say that f is a finite type morphism if
V) =i
has a finite covering by affine open subschemes U;; = Spec B;; with B;; being
an A;-algebra of finite type (i.e. finitely generated as an A; algebra).

Definition A.7 Let f : X — Y be a morphism of schemes. We say that
f is universally closed if for every scheme Z with a morphism Z — Y, the
projection from the fiber product

XxyZ—=Z

is a closed map of the underlying topological spaces.
And finally,

Definition A.8 Let f : X — Y be a morphism of schemes. We say that f is a
proper morphism if it is separated, of finite type, and universally closed.

We need the following fact which we will not prove right now:

Proposition A.9 Let f : X — Y be a proper morphism. Then for any subvariety
V of X, the image W = f (V) is a closed subvariety of Y.

In such a case (proper morphism), we get an imbedding of fields
R(W) <= R(V)

To justify this, first consider a dominant morphism of varieties h : A — B,
i.e. a morphism in which the image is dense (this is trivially true in our
case from V to W = f(V)). Suppose ¢ € R(B) is a rational function on
B, thus by definition it is an equivalence class [(U,g¢ € O(U))], under the
familiar equivalence relation. Pick a representative (U, g) for ¢. Since f(A)
is dense, f~!(U) is non-empty. Hence [(f~!(U), f o g)] is a rational function
on X. We see that equivalent functions pullback to equivalent function. In
this way we obtain an embedding R(B) — R(A).
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A.3. Flat Pullback of Cycles

Returning to the case of Proposition A.9, it is a fact from [3] that R(V)/R(W)
is a finite field extension if W has the same dimension as V. Thus we can set

_ JIR(V):R(W)] if dim(W) = dim(V)
deglV/N) = {0 if dim(W) < dim(V)

uppose V is k-dimensional in X, we can also define a k-cycle in Y to be
fi[V] = deg(V/W)[W]

We can extend linearly to define a ring homomorphism, called the push-
forward
f* L X = 7Y

Theorem A.10 If f : X — Y is a proper morphism, and « is a k-cycle on X which
is rationally equivalent to zero, then f.a is rationally equivalent to zero on Y.

A.3 Flat Pullback of Cycles

Definition A.11 A morphism of schemes f : X — Y is flat if the induced
morphism on stalks at every P € X:

fg : OY,f(P) — OX,p

is a flat morphism of rings, i.e. this morphism makes Oxp a flat Oy ¢(p)-
module. (Recall that a morphism of schemes has an underlying morphism
of sheaves on Y

f# : Oy — f*OX

which induces a local ring homomorphism of stalks

fg : Oyrf(p) — OX,P

in which the locality is required as part of the definition of the morphism of
a locally ringed space.)

There is a geometrical interpretation for flatness. Roughly, it is a “smoothly
varying family of fibers.

Definition A.12 A morphism of schemes f : X — Y has relative dimension
n if for all subvarieties V of Y, and all irreducible components V' of f~1(V),
dim V' =dimV +n.

Fact: If f is flat, Y is irreducible, and X has pure dimension equal to dim Y +
n, then f has relative dimension 7, and all base extensions X xy Y’ — Y’
have relative dimesion 7.
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We assume every flat morphism to have a relative dimension n for some
integer n.

For a flat morphism f : X — Y, and any subvariety V of Y, set

FIvi=[(v)]

where f~1(V) is the inverse image scheme with scheme structure given by
fiber products, which is a subscheme of X of pure dimension dim(V) + n
(from flatness), and [f~1(V)] is this subscheme’s cycle (of schemes). We can
extend by linearity to flat pullback homomorphisms (of rings)

f* 2 — ZkJrnX

Lemma A.13 If f : X — Y is flat, then for any subscheme Z of Y,

f1zl =1f1(2)]

Theorem A.14 Let f: X — Y be a flat morphism of relative dimension n, and
« a k-cycle on Y which is rationally equivalent to zero. Then f*w is rationally
equivalent to zero in Zy,,X. Therefore there are induced homomorphisms, called
the flat pull-backs

f*: AY — Ak+nX

so that A, becomes a contravariant functor for flat morphisms.
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